Candidate Name

Candidate Number

Center Name

Center Number

PYATC

OCR Computer Science Project

Carlos Lagoa

INDEX

Topic Page

Analysis
Brief Description 3
The problem and the ease to solve it using a computational approach 3
Identification of stakeholders 3
What are the stakeholders interested in? 4
Why other solutions won’t fix the problem 5
What does the research tell us about how PyATC should be 6
What will PyATC inherit from other solutions 7
Limitations within PyATC 8
System Requirements 9
Why was Kivy chosen and not other alternatives 9
What are the stakeholders interested in? 10
Success Criteria 11

Design
Design methodology 12
Main structure of code structure - pseudocode and flowchart 14
Main structure of code structure - visual 18
Data structures 21
Development methodology 22

How the code will be split into different parts - abstraction 23

Topic Page

Development and Version Testing
Version 0.1 - main aesthetics and menu navigation 24
Version 0.2 - motion testing 30
Version 0.3 - motion implementation 31
Version 0.4 - addition of functionality to game screen 32
Version 0.5 - further game screen development and bug fix 34
Version 0.6 - addition to game dynamic and aircraft referencing 37
Version 0.7 - clock functionality, class inheritance and score screen 42
Version 0.8 - landing implementations and other airports 45
Version 0.9 - final test and runs before delivery to stakeholders 48

PyATC 1.0 Evaluation
Does PyATC meet the criteria chosen whilst planning? 51
Limitations of PyATC 53
Proving that the Ul and main features are effective 55
Was RAD development the correct development to use 56
PyATC 1.0 Maintenance 57
Stakeholders final opinion of PyATC 1.0 59

Analysis

Brief Description

In this section | will discuss a variety of topics regarding my project. Firstly | will talk about
the project I’'m doing.

My project is called PyATC, it is an air traffic control simulator written in Python with major
graphical support from the Kivy library. Although there are already existing solutions |
hope that mine will bring different usability options and therefore be a good alternative to
existing air traffic control simulators.

The problem and the ease to solve it using a computational approach

The problem that | am aiming to solve is to provide an offline, free of charge software with
learning capabilities that will teach anyone about the methods of handling the
approaching aircraft in an airport. This problem can be solved using computational
methods, starting from the ease of creating different environments to practice down to the
complex task of having the same learning device and method as you progress (thanks to
being able to change the difficulty) - which is more efficient than, say, having a book,
which changes it’'s teaching and learning style as the user gathers more knowledge and he
has to change books and therefore authors.

Identification of stakeholders

For the project | will have a certain number of stakeholders, the stakeholders will guide me
in the process of creating, goal setting and evaluating my software. They will also have
either problems with the current software available or with their knowledge, or lack
thereof, regarding air traffic control.

My stakeholders will be members of the student body at my school who, for one reason or
another, have decided to use my software (once it’s finished). Below we can see a list of
the stakeholders and their reason to be involved with the project.

Name Involvement

Alan Harvey Getting a flying license and uses air traffic control simulators
Matthew Beimborn Interested in aviation but rather limited knowledge about it

Harry Dalton Interest in how the software could be easier to learn than alternatives
Elliott Attew Intrigued by aviation and interested in the friendliness of the project

Marlowe Ballan Will try PyATC and see if he likes it, plays other computer games

What are the stakeholders interested in? - interviews to decide missing

features and other problems with existing solutions

Whilst researching why other games where not the best option and why PyATC was
needed it was decided to carry on a set of multiple choice questions for the 5 stakeholders
in order to see where development of PyATC should be most focused on and what parts
could not be given such a big priority.

1. Have you ever been interested in trying an air traffic control simulator?
Yes (4) No (1, Marlowe)

2. If you have been interested in air traffic control simulators, why haven’t you played
them more? (please note, only 4 and not 5 can answer this question)

Too easy/hard (2) Could of used the internet connection for something different (1)

Other (1) - “my computer was too slow and getting to the website and playing it
took time”

3. If you haven’t played PyATC, what was the main reason? (only Marlowe could answer
this)

“The game seemed to complicated to begin with and tutorials were hard to follow”
4. Would you ever pay in order to have more functionality or tutorials?

No (3) Yes (0) Only if the tutorials where very extensive and comprehensive and
the price was very low(1)

5. How much do you value graphics when compared to a more or less engaging game play?
As long as game is engaging graphics don’t matter (3) Graphics are a top priority (0)

I like graphics to be one of the priorities, but not the top one (1)

6. What computer do you typically use?
Desktop (1) Desktop and laptop (2) Laptop (1) Other (1)

Other... (Harry Dalton) "I use a laptop but when I’'m home | also tend to use a
Raspberry Pi; hooked up to my TV for tasks such as low spec games (Doom, N64
MarioKart...) and media purposes (films and music) - Over the last year | have used
it so much that | have to give it credit as a daily computer”

7. What operating system do you use?

Windows (3) Mac (1) Windows and Mac (0) Linux (1) Linux and Mac (0)
Linux and Windows (0)

Why other software solutions will not fix the problem - Researching

other solutions

There are a number of reasons PyATC was decided as the project and the large majority of
them is to outline some of the lacking features that other simulators have.

Firstly, there are a number of ATC (air traffic control) simulators which require internet
connection to operate and that can be seen as an inconvenience. Personally, | own a small
computer and a carry it with me everywhere and so do most of the other PyATC
stakeholders. There are parts of the day where the computer has no internet connection
and the user has free time (perhaps waiting in an airport or being in a bus journey) - in
those cases the laptop is there to be used but certain ATC simulators cannot be played
simply because there isn’t a stable internet connection.

Furthermore, and linking to the internet problem; nowadays an internet browsing software
can be very demanding, for example Google Chrome has a tendency to use as much RAM
as possible and that leaves the other tasks of the system almost unusable in some cases.
A lower spec computer, such as the one being used to develop PyATC needs to divert to
alternatives such as running Firefox or Opera, which don’t use as many resources.

It is however not only the browsing software, if we decide to download an air traffic control
simulator and have it as an executable file in our computers we will find that the file
responds to the extension .exe, thus providing only Microsoft Windows computers with the
ability to launch the software. Low spec computers (again, such as the one developing
PyATC) have to run a Linux operating system in order to be usable to the extend of
productivity and therefore cannot run any ATC simulator using an .exe - not even MacOS
will be able to run an .exe file.

Secondly, there are a number of ATC simulators which are available offline. This solves the
above problem however creates a new one - they cost money, an example can be seen in
the following image.

" WELCOME

for 2017

The need to pay creates the problem whereby the user doesn’t know if paying that
amount of money is worth it and therefore might decide not to undergo the purchase,
especially as he has never tried an ATC simulator before (a case which could determine
whether or not the user plays the game at all)

Furthermore and perhaps the greatest problem is for the ‘not-perfect’ users. We could
define a perfect user as a user who finds the game play engaging and challenging, this
perfect player plays the game and by the time he has finished the session he gets a score
which is considered as good but could be improved, for example an 75%. Unluckily the
normal player is far away from a perfect user. The most typical players will either be a
beginner and could find a session too difficult or an experienced player who needs
something very challenging.

What does the research tell us about how PyATC should be

With this variety of problems that the stakeholders are experiencing a first design for
PyATC was done;

- PyATC should be offline, so that it can be used anywhere

- PyATC should be free, so that people don’t have any second thoughts about trying the
software even if they think they won't like it

- PyATC should have the ability to change difficulty to keep a large pool of users interested
and engaged.

- PyATC should be multiplatform being able to run on multiple devices such as 11” touch
screen Windows ultrabook, a powerful 32” desktop Mac Pro or even a Raspberry Pi

What will PyATC inherit regarding design and functionality from

other solutions

Thanks to the research done, some items that other solutions had can be implemented to
PyATC. For example, in the website www.atc-sim.com/simulator, we can see that there is
very efficient user interface.

B R Lk i RPA3537: Ready for takeoff on runway
3.

RPA3537 33 672=
E170 To:PMPKN (o]

On the right hand side we can see that there is something which could be thought of as
the control panel, with information regarding planes and their positions and also other
items, such as a text box to communicate with planes. This design could be adapted to
PyATC as it is a very intuitive solution round the problem of how to lay out and
differentiate the real-time visual updates from other types of information and data intake.

Furthermore and regarding the way planes are classified we could take on from

http://atcradarsim.com/simulator/klga/atc and lay them out based on how they have done
it.

As we can see here, the aforementioned software
solution has set out the information on boxes, with
information such as the plane identifier, its speed, its
altitude and heading and even information such as its
arriving waypoint.

Limitations within PYATC

Now that a number of features have been determined based on lack of functions from
other alternatives which have been researched we can define a framework for work so
that we know what PyATC can and can’t do and what the limitations might be.

PyATC is not aimed to be a realistic training software but a mere abstract simulation
software so that people can understand and feel what it is like to manage arriving planes.
Therefore we could say that one of the limitations of the project could be the realism it
achieves. It should only be realistic to a certain extend; for example it should cover how
planes need to maintain a safety distance, but it shouldn’t be realist enough so that the
distance depends on the type of planes interacting - if this was to be included the game
play and learning process would be greatly increased and the valuable knowledge gotten
out of the variable safety distance would be nothing compared to the time and effort put
in initially.

Another fairly important limitation could be the cross platform availability. By developing
with the Kivy library we can export the project to Windows, MacOS, Linux, Android and
iOS - however due to the fact that the application will possibly need a keyboard as the
communications interface that could limit the devices available to download the app.
Therefore another problem for the application could be that it doesn’t support all of the
devices it could.

As a last point, PyATC will not count with a departing aircraft simulator, it will only have
the approaching aircraft. This is because in reality a controller only takes care of either
arriving or departing aircraft. However this can be seen as a limiting factor compared to
other solutions, such as www.atc-sim.com/simulator which does in fact have both arriving
and departing modes.

System R equirements

Now that the limitations of the project have been assessed we can discuss the minimum
hardware and software requirements that the project will use-

Hardware Software
Keyboard Python 2.4
Mouse Kivy 1.0
Microsoft Windows XP, Mac OS X Puma or Linux 2.4.0

Why was Kivy chosen and not other alternatives

The reason why Kivy has been chosen, as opposed to any alternatives such as PyGame is
because of two main reasons; the first one is the fact that while PyGame is purely for
games, Kivy offers a varied Ul library as well as the motion framework that you would
expect to encounter in game development. Kivy allows for buttons, checked boxes,
window transitions... whereas PyGame only allows for the creation of a rectangle and then
one has to manually put text inside that rectangle and let it act as a button, this can be a
problem when dynamically re-sizing a window.

Another reason for the choice of Kivy has to do with the Ul and the way it renders and
functions; it is built around the idea that touch input is very important and therefore
supports and enhances its functionality when touch is used; furthermore since there are so
many Ul items and they are all so specific and well linked between each other and interact
with its parent and child layouts the task of re-sizing a window is very dynamic and easy to
handle. This will be good for modern smaller screen laptops.

10

What are the stakeholders interested in? - interviews to decide PyATC

top priorities and other program features

Please note, all stakeholders have been informed about PyATC being offline, free and
multi-platform, this set of interviews is purely based upon what should PyATC feature and
how should it feature it.

1. In the title screen what should be displayed?

Buttons taking you to places (4) A set of images that take you to other screens (1)
The actual game, with the option to pause it and go to other screens (0)

2. Should you be able to detect incoming planes, departing planes or both?
Only one of the options, whichever (3) Incoming planes (2) Departing (0) Both (0)

3. Would you prioritize having an extra airport to play on or an airport that served purely
tutorial purposes?

Extra airport (1) Tutorial based airport (simpler to understand; for practice) (4)
4. How would you keep track of difficulty within the game?

Add countdown clock and see number of planes landed / departed (3) Have to land
/ depart a max numbers of airplanes (2) Unlimited time score, when plane has
incident stop game and count points (0)

5. How many difficulties would you have?
1(0) 2(0) 3(4) 4(1) 5(0)
6. Do you prioritize in-game aesthetics (colors, banners...) or an informative tutorial screen?
In-game aesthetics (0) Tutorial Screen (5)
7. How long would you make a game, and how many levels would you set?
Less than 10 mins, close to 30 mins and close to 1h (4)
Less than 10 mins and close to 20 mins (0)

10 mins, 20 mins and 30 mins (1)

11

8. If you have ever used an ATC simulator, what features did you like the most?
It was very visual and | could see the planes moving (2)
It was interesting to keep track of my process and see how | improved (1)
| liked typing the input, rather than guiding a plane with my fingers or with voice (0)
9. What colors should be displayed?
Contrasting colors; black background and red / yellow / orange / white items (3)
Dual color palette; only white and black to aid simplicity (1)
As real as possible; mostly green with red, white and black items (1)
10. Should the final score be composed of mistakes as well as successes?

Yes (4) No (1)

Success Criteria

Based upon what has been researched, analyzed and discussed with stakeholders we can
design a clear success criteria for PyATC. The following list is a recollection of what the
majority of stakeholders thought was the best answer to the questions asked, as well as a
requirements in relation to what was learned from the research.

PyATC Success Criteria

From a design point of view

a) The design will be modular, each screen will serve a purpose
b) There will be a title page whereby all features can be accessed
c) The screen will have an easy to read feel to it, with black background and

contrasting items such as the runway and planes

d) There will be a variety of airports that the user can choose from
e) The planes in the screen will randomly appear and the user must guide them
f) The users will count with a real time view of what is going on, however all the

information will be reachable through the side bar which will also have the
remaining time and a pause button

12

g) Although not graphically extraordinary, the game should still represent the
modern looks the Kivy Ul library

h) Although not very complex graphically, the game should still be intuitive, with
special emphasis on navigating the menus and engaging with the simulation

From a portability and usability point of view

a) The game should be able to run on Windows, macOS and Linux

b) The game will be usable for a variety of computer types (workstations,
touchscreen laptops...) as it will detect and interact with touch

c) The game will be playable from different sizes; as it will dynamically adjust to
different screen sizes

d) The game will be able to run from low-powered hardware (i.e. Raspberry Pi)

From a process point of view

a) The final score will be composed of user changeable values

b) The timing and location of arriving planes will be randomized within a framework
based upon the selected difficulty

c) The player will only control planes that are incoming

d) The player will choose from a variety of difficulties, that will change how often
planes are generated

SIGNED;

Alan Harvey, Matthew Beimborn, Harry Dalton, Elliott Attew and Marlowe Ballan

13

Design

Design Methodology

Python can either be a procedural language or object orientated, because of the way Kivy
works | will be programming in object orientated - and therefore | will have a variety of
classes. Python defines not only items (perhaps a plane) as a class with certain properties;
but also different screens, so as a screen moves from one to another so do the classes. In
particular | will be using the following classes;

For the menus

Menu Screen

|\

Session Tutorial Extra
Start k T
f. Text-based Information
Session tutorial about
Setup .\ project
- k Simulator-
Simulator based tutorial

For the simulation screen

Simulator

A

Plane Runway(s) Terrain

14

Main overview of code structure — pseudo code and flowchart

The following pseudo codes aim to describe the main functioning of the screens that will
feature in PyATC.

I will now demonstrate the flow of the game using a flow chart diagram. This will only
cover the button press ‘Start Session’ on the main screen and not the ‘Tutorial’ or ‘Extras’

On the next pages it will also be possible to see the pseudocode expected for the game
logic and the way screens are structured in PyATC.

15

16

User pressed "Start Session’

h

Session started under parameters X difficukty,
airport Y and duration Z

Game ended, results shown

A

b

Haveplanes gone through a collision?
(either with the screen edge or other plane)

User changes a parameter (velocity, heading or
altitude) on plane "P*

Does plane ‘P exist on the array

of planes on the air? Display ‘plane doesn't exist’

Does the status change for plane "P*
meet the criteria? (speed above

¥ but below y, altitude above z,

etc ete

Display ‘plane ‘P can't do that'

Yes

h J

Edit plane 'P'based on
paremeter changed

User instructs plane P to land

LJ'

Does plane P’ have the correct speed,
heading and altitude and is it close enough
for the ILS on the runway to

catch the plana? Mg Display ‘plane ‘P' can't do catch ILS"

Yes

Computer adds one to the landed
planes and lands the plane

Yes

Has tine run out?

Mo

#PyATC game screen, layout covered on IU layout section below, this wil Ibe mostly logic
generate_plane:
randomly generate a number and call it ‘x’, the range of numbers depends on difficulty
if x = 1: generate new plane; call it random(airline name, three digit number)
give it speed random.range(200, 300)
create it at screen edge at angle random.range(0, 360)
give it altitude random.range(4000, 8000)
plane_landing:
if plane is close to ILS catch point AND has speed 140 AND has altitude 1500:
make computer take charge of plane

print “plane caught ILS stream, will now land itself”

collision:
if plane goes over screen edge OR plane and other plane are too close:

go to game_over(Screen):

natural_game_over:
if timer == ‘00:00":

go to game_over(Screen)

17

#PyATC pseudo code, main layout and linking between pages through buttons and program flow
main_menu(Screen)
button = “Start Session”, when pressed go to session_setup(Screen)

button

“Tutorial”, when pressed go to tutorial_text(Screen)
button = “Extra”, when pressed go to extras(Screen)
session_setup(Screen)

dropdown_menu = “Select airport...” - “Norwich Intl”, “Mallorca Intl”

dropdown_menu = “Select difficulty” - “Easy”, “Medium”, “Hard”, “Extreme”

dropdown_menu = “Select time” - “5mins”, “20 mins”, “1h”
button = “Start Session”, when pressed go to simulation(Screen)
simulation(Screen)

due to the complexity of this screen | will devote a single pseudocode screen and Ul
diagram later on

tutorial_text(Screen)

text = “Welcome to PyATC, this program aims to help... the way to use it is... “

button = “Practice in training airfield”, when pressed go to tutorial_simulation(Screen)
tutorial_simulation(Screen)

due to the complexity of this screen this has been covered before hand.
extras(Screen):

text = “The highest scores achieved in each category so far are...”

text = “This project is for the benefit of any user and in particular the stakeholders...”

text = “The data structures used in this project are...”
game_over(Screen):

this screen appears when the simulation(Screen) ends, either through the user winning
or the user dying, The final score is composed of a number of variables discussed later.

label = "The game has finished, here is your score”, score, “\n and here your stats”, stats

button = “Back to main menu”, when pressed go to main_menu(Screen)

18

Main overview of code structure — visual

In the following pictures we will be able to see the prototypes for the Ul, based on either

self-made ideas or placing concepts based on research.

PyATC

Start Session
Tutorial

Extra

Once the user
presses the Start
Session button
they are directed
to this screen
whereby they
can choose the
parameters for
their session.

19

This is the
PyATC main
screen, when
the program
starts this
screen is shown
and all the
possible
actions are
accessible right
from the menu

Session Setup

Difficulty

Difficulty

Easy
Medium

Hard

Extreme

Duration

Duration
5 mins
20 mins

50 mins

Real - 1h30

Airport

NWI - Norwich
PMI - Mallorca
LAX - Los Angeles

<E D

TOP VIEW

OF

AIRPORT

Where departing aircraft
are displayed as blue dots
and arriving aircraft are
described as yellow dots
that have little text boxes
following them with their

information

Either because the
user has died or
because he has
successfully finished

the session he will be

taken to this screen,
where he can see his
information, final
score and where he
can save this

20

Sesslion Review

Landed 15
Gulided to Waypoint 18

Landed within time 13
Gulded within time 15

Minor Incidences 1
Major Incidences 0

798

Final Score

Arrival

AE787 FL020 150
AF619 FL025 180

QA232 FLO19 130

TIME: 13: 34
SCORE: 482

Type command here...

When the user
starts the session
he is presented with
the simulation
screen, on the left
hand side the user
counts with real
time 2D visual aids
of the position of
the planes whereas
on the right hand
side the user can
see the information
and send messages
back.

Session Over

Under what name would you

llke to save this score?

(If untouched then name Is

default)

Skiloreg

Main Menu

Tutorial

Lesson 1 A

Lorem ipsum dolor sit amet,
consectetur adipiscing elit
Vestibulum vitae massa ac diam
facilisis sodales id eget eros. Sed
vehicula metus nulla, ac porta erat
eulsmod eu. Suspendisse potenti.
Mauris vehicula magna nec
volutpat congue. Donec
consectetur nunc semper posuere
gravida. Vestibulum sodales Lorem
Ipsum dolor sit amet, consectetur
adipiscing elit Vestibulum vitae
massa ac dlam facilisis sodales id
eget eros. Sed vehicula metus
nulla, ac porta erat euismod eu.
Suspendisse potentl. Mauris
Vehicula Is a cool guy.

Furthermore, the
user can choose to
come here and get
more information,
the content of this
page will be
decided later on,
but here is a basic
overview of how it
should look

21

Lesson 1 B

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.
Vestibulum vitae massa ac diam
facilisis sodales id eget eros. Sed
vehicula metus nulla, ac porta erat
eulsmod eu. Suspendisse potenti.
Mauris vehicula magna nec
volutpat congue. Donec
consectetur nunc semper posuere
gravida. Vestibulum sodales Lorem
Ipsum dolor sit amet, consectetur
adlpiscing elit. Vestibulum vitae
massa ac diam facllisis sodales id
eget eros. Sed vehicula metus
nulla, ac porta erat eulsmod eu.
Suspendisse potentl. Mauris
Vehlcula Is a cool guy.

Extras

To next
tutorial
Train in
airport

If the user
however
chooses to come
to the tutorial
screen and get
guidance they
can have lessons
on how to
perform certain
tasks and then
they can
simulate those
tasks and
practice them in
the practice
airfield.

Credits and special mentions

Lorem Ipsum dolor sit amet,
consectetur adipiscing elit.
Vestibulum vitae massa ac diam
facilisis sodales id eget eros. Sed
vehicula metus nulla, ac porta erat
euismod eu. Suspendisse potenti.
Mauris vehicula magna nec
volutpat congue. Donec
consectetur nunc semper posuere
gravida. Vestibulum sodales Lorem
Ipsum dolor sit amet, consectetur
adipiscing elit. Vestibulum vitae
massa ac dlam facllisis sodales id
eget eros. Sed vehicula metus
nulla, ac porta erat euismod eu.
Suspendisse potenti. Mauris
Vehicula is a cool guy.

Developer Information

Algorithm
Overview

Project
Proposal

Resouces used
Source code

Main Menu

Data Structures

The data that will be used for the proper utilization of the game can be divided into two
lists; user-based and computer-created ones. The user-based ones would be ones that the
need the interaction of the user to either be created or changed, whereas the computer-
based one is simply data that the code steps through either sequentially or logically. For
the planning purpose | will list examples of both data structures and then | will move on to
give a general idea on how PyATC will use different data structures

User modifiable data structures

item data type asked... /used... basic description/use

username str at end of session to keep track of scores
game_length array session setup screen ask how long the game is
game_difficulty array session setup screen ask how difficult the game is
game_airport array session setup screen ask where to simulate
ingame_landed int simulator screen keep track of planes landed
ingame_warnings int simulator screen keeps track of traffic
abnormalities

ingame_crash Boolean simulation_screen has the user made planes crash?

Software used static data structures

item data type (suggested) value basic description/use

easy_plane_gen array range[100, 180] how often planes will be generated
med_plane_gen array range[70, 140] how often planes will be generated
hard plane_gen array range[50, 100] how often planes will be generated
xtreme_plane_gen array range[30, 70] how often planes will be generated
easy_duration int 300 seconds for one easy session (5mins)
med_duration int 1200 seconds for one easy session (20mins)
hard_duration int 3600 seconds for one easy session (1h)
xtreme_duration int 5400 seconds for one easy session (1h30)

22

Generally PyATC would only contain the following data structures;

data structure basic information of usage

integer used for storing user score, random plane generation values etc..
string used for storing texts such as tutorials or user names

array used for storing the different difficulty levels

float used for more extreme situations such as accurate layout

Development methodology

To develop PyATC | will use the Rapid Application Development methodology. This type of
methodology features minimal planning in order to have rapid prototyping, thus allowing
corrections to be made much quicker than if we spent time planning a version of the
simulator.

RAD (Rapid Application Development) is beneficial because it aids the modular approach
we are taking to the development of PyATC, whereby we develop abstract parts of the
solution and then put them together once they work.

RAD is good for this project in particular because of the following reasons. Firstly, changing
requirements can be accommodated, this means that if any decision or change where to
be taken which would somehow change the content or aesthetics of PyATC this model
could be integrated faster, thus furthermore giving a better image of whether the
proposed change is of value or not.

Furthermore, the progress can be measured, this is beneficial as the project is very
modular and could require the use the milestones in order to see where we are. The fact
that the progress can be measured more easily also means that it will be simpler to go
back to an early stage in case this is needed.

As one of the last points, RAD makes development time be reduced, this is because little
planning is done and for certain projects (such as one with not many people working on it)
this is beneficial as there is no need for communication upon planning or developing.

23

As a last point, by using this methodology we can encourage stakeholder feedback, this is
extremely beneficial as it will be possible to always know whether or not the project has
lost its initial aim.

How the project will be split into different parts - abstraction

PyATC development will be split into different smaller chunks to make the problem more
approachable. This will aid the problem solving side of the development and furthermore
will make troubleshooting easier.

The project can be abstracted into the following parts for development.

Iltem Description

screen menu This could focus on the development of the main screen
screen instruction This could focus on the development of the instructions
screen extra This could focus on the development of the extra screen
screen setup This could focus on the development of the setup screen
screen game layout This could focus on the layout aspect of the game screen
screen game levels This could focus on making the time, difficulty & airports
screen game motion This could focus on making the planes interactive

Dividing the development like that will ensure that any problem that comes up only
appears in its section and therefore | can make sure that once its solved the simulator
works just as it did before the error. The value of abstraction is essential in large projects.

Development and Version Testing

Version 0.1 - main aesthetics and menu navigation

As previously mentioned the development will be split into different sections. And
therefore in this chapter each section will be separated. First we will start with the screen

24

menu. Because | am using the RAD model, | will be showing the progress | made on certain
scenarios, but however in other scenarios (mostly GUI development) | will only show the
final result, as there is no
actual progress or
extremely complex code to
show or evolve

This is the styling code
(Kivy separates styling and
logic, how CSS and HTML
works for example) here we
can see how | use different
indented layouts in order to
add the correct spacing and
layouts.

This class is called
<MainMenu> and is later
on referenced in the python
code as a class, with a
‘pass’ as python doesn’t
need to handle any logic
from the screen.

This screen allows users to
access different parts of the
game through sleek window change animation. Here we can see how it looks.

As we can see, PyATC re-sizes automatically,
this allows for a lot of different screen sizes PyA TC versiono.
to use PyATC.

Start shift Tutorial

Details

PyA TC Version 0.2

Start Shift

Now | am going to talk about the instructions screen and how I did it, firstly | made a main
layout which had three components (later on | reused this layout for other things). The
three main components were:

- A button allowing to return to the main menu
- A button allowing to go to the next screen after a tutorial (trial run on easy airport)
- A bigger section allowing me to put content on (the tutorial text in this case)

The way this was done was so that upon resizing the buttons wouldn’t change shape, only
the text would change shape in order to fit the new screen. Here is the code:-

Here we can see how we split
up the layout into two parts,
and then later on the second
part of the layout was further
split into two equally sized
buttons. Initially the buttons
where incredibly small but
then, and with touchscreens
in mind, | decided to make the
buttons larger. Not only more
aesthetically pleasing but also
more efficient for any screen
using this game.

Here is the result.

How do | control the planes?

How do | know the status of the planes?

The o

26

A very similar approach was done for the extras screen and the setup screen (where one
chooses the parameters for the simulation session)

This is the extras screen, it
displays other information such
as who are the stakeholders and
what the project is about.
Because this screen can’t take
the user anywhere else, there is
only a back button.

Here is how it looks:

After those main screen it was time to start developing the actual simulator, which is when
the actual RAD development process started. To start with | made a very simple layout
without any logic to it, this allowed me to prototype and then quickly change if | though
things could look better. | vaguely based myself on the ‘main-content-on-the-left,
additional-content-on-the-right’ design pattern I'd been following on the other screens.
This was a good idea because it meant that design wise | didn’t have to completely
reinvent the wheel and furthermore, it was something that would look similar to the game
users. Apart from using the same design as in other screens, | used the same ideology that
the content pane on the right should be the one to stay the same size. This meant that |
could confidently put all the important content on that right pane.

| started with a simple design:-

27

28

Here we can see how the screen has
been designed in the Kivy language.

At this point | started thinking of how
the certain parts of the code could
link into the python logic code, for
example in line 98, where | linked
the switch to a function in python so
that the code would start a yet to be
programmed clock cycle which made
the planes move periodically.

| also labeled with the ‘id: * (example
line 91) so that | would then be able
to reference the Kivy styling sheet
from Python and change its
properties. In this case, my idea was
to be able to change the label
‘departing’ depending on the planes
that appear in the screen.

After designing this, | only needed to
start working on the actual
simulation part.

Beforehand however, the runways
needed to be done; for this | will use
a Kivy canvas (similar to an HTML
canvas)

| also made the positions be according
to the size of the screen so that when
resizing the runways also resize, this is
the result;

And with that we just have reached a milestone. Version 0.1 has been completed. It has a
functioning menu and in-game screen layout, it is missing the logic and the addition of
other airports and levels.

This was shown to the stakeholders, and a new small interview was carried on.

1. What do you think so far of the progress? Are you happy with the results and see the
future of this project?

Yes (4) | think what | see so far doesn’t show me enough, | need to see the actual
game (1)

2. Do you think the approach taken in terms of tutorials and user friendliness is acceptable?

Yes (3) More work needs to be done on the tutorial screen (1) | don’t think that
matters, the user can choose how friendly he wants his game to be by choosing
difficulty (1)

3. Is there anything that hasn’t been discussed that you would like to see?

The tutorial simulator should be far more approachable than any of the other
screens (1) No (4)

After the meetings were done | was able to assess how the stakeholders felt about version
0.1 of the PyATC under RAD development methodology; overall positive and expecting to
see progression in Version 0.2

29

Version 0.2 - initial motion testing

Version 0.2 focused mostly on the game dynamic and on creating the motion for the
aircraft. To start on the motion, | started on a blank workspace, this blank workspace
would allow me to experiment and create models, in this case there was a moving ball
which would multiply once the screen was touched. The new appearing ball would be
inside a class along with the other balls and have random values for direction and speed,
once it touched the wall of the model the ball bounced back in the negative direction and
speed.

Here we can see a snapshot
of the code | used, in it | have
an update function which | will
use in the PyATC simulator to
have the planes moving like
they would move in an actual
Air Traffic Control booth
(moving a couple of times per
second and not contentiously;
this happens because of the
hardware refresh that the
radar requires)

The on_touch function then
adds a Ball of random
properties. The ball class
houses this functions and its
properties if | ever wanted to
display them - | used a class
over an array as | found it
easier to store a list of balls
with certain properties this
way.

After that and by using the
Kivy language | was able to gather one of the ball class properties. Its overall number,
furthermore | was able to put everything in a nice aesthetic thanks to the Kivy language.

The screen shots will be available next page.

30

After that was done | was able to give a certain direction and generate new balls under
certain conditions, which meant | could translate this into the PyATC design.

Version 0.3 - motion implementation

Version 0.2 brought around the introduction to motion of the actual PyATC simulation
screen, in version 0.3 | will work on the implementation into PyATC

For this | will use the original code | have and create a class called ‘SessionScreen’ and
furthermore have implemented the movement we had on the blank workspace example.

In this example we can see how the update function has an update cycle where all the
planes move, however this update loop can be broken with the conditional statement that
appears below it; in it it doesn’t allow planes to leave certain boundaries; one of them not
being the edge of the screen but rather the edge of the control center pane on the right
hand side of the screen which, just as we planned it, will always be 250px wide and
therefore we can set the condition with just 250px rather than actually referencing the

31

pane which is something that brought around problems. When one of the planes has one
of these conditions the game clock (used in the update class) was stopped

As it happened in the blank workspace, there was also a class for the moving objects, but
in this case the class was called ‘Airplanes’.

As we can see the in the screenshot above the plane determines its movement by
multiplying its current position times its velocity at every cycle; and the velocity is
determined by the angle we give, at the time being when planes render they all have the
same angle, but in the future this angle will be different for each plane render.

Now we have the ability to have a plane moving under a control speed and within a
boundary; below we can see a screenshot of how this works within the game

ARRIVING

ARRIVING

And with that Version 0.3 was finished, it was time to start Version 0.4

Version 0.4 - addition of functionality to game screen

Version 0.4 introduced the use of commands to interact with planes to a basic level, it
added two new functions within the ‘SessionScreen’ class; ‘get_planes’ and ‘on_command’

32

The ‘on_command’ function gathered and split the string that the user had used as input
once he pressed enter, furthermore the ‘get_planes’ command was used for being able to
gather all the planes that appeared into screen.

After that | also added a ‘plane_creation’ function, which added the planes to the screen
and gave them appropiate naming.

Here is the ‘on_command’ function :-

on_command is triggered when
the input box in the game
screen receives an enter as its
input, when that happens
on_command gets and stores
the value (line 350), and clears
the text box (line 351), after
that it splits the text into which
plane is being referenced, for
what exactly and what is the
value of change the airplane
should undergo (lines 353, 354
and 355).

If the plane being referenced is
not part of the list a message
appears informing the user that
there is no such plane (line 357
to 361).

After that a series of conditional
statements convert the input
into one of the possible
instructions that the user could desire (lines 365 to 377). Please keep in mind that this
code will be refined later on.

After working on the ‘on_command’ function | worked on the ‘get_planes’ function. This
function fetches a plane from the class which stores the planes, it is incredibly useful when
trying to reference planes like for example in the on_command class. The class returns
nothing if the plane doesn’t exists. In the next page we will be able to see a screenshot of
the code and the parts that need explaining.

33

So far we can see the one
flaw is simply the fact that
the random generator might
create planes with exact
names however this can be
fixed later on. Here we can
see how we make the planes
into an array and we check if
what we are looking for is in
the plane list

After this function | also did was the ‘plane_creation’ function, this function allowed me to
automatically create airplanes with a given random name within my desired parameters.
Here is the code:

Here we can see how this function simply gives a new plane the basic information it needs
in order to be functional and interactive with the user, in the near future | will make this
function run at a random time frame based on the difficulty selected by the user.

And with the addition of those 3 important functions Version 0.4 was finalized.

Version 0.5 - further game screen development and bug fix

Version 0.5 brought the creation of the ‘start _function’ function, these function added
functionality to the START-
STOP switch on the control
pane on the right hand
side of the game screen in
PyATC.

34

After that | could make PyATC stop and start when ever | wanted. During the development
of this | had an extremely hard to find issue with the code;

This is the kivy
language code for
the switch, which
when changed of
its current state,
sends a callback
function to the python logic code which then triggers it to either start or stop the game.

However up until Version 0.5 | used ‘on_release: root.start_function()’, this lead to the
game starting and stopping immediately and | spent time troubleshooting. The way | found
that the the problem was the action detector was by printing the action of the button
pressed everytime it was pressed. When using ‘on_release’ it came up twice in one go
(start and stop). This is a bug in Kivy. To solve it | used another action receiver; ‘on_active’

Output with single press on on_release Output with single press on on_active

Start-Stop triggered

After that | also worked on the mid-air collision module, this meant the creation of a
module similar to the ‘abandon_airspace’ module. Here are the two modules, and below
we can see how they are triggered.

Here is the logic behind the trigger of the airspace_collision:-

35

As we can see here the game checks every update for a collision event. It runs through the
list of planes (line 426) and discards checking the proximity with itself (lines 427 and 428)
after that it follows Pythagoras theorem logic in order to have a 3 dimensional ‘personal
space’ which when intruded by another aircraft jumps to the airplane_collision function.
That leads to a game over.

Apart from that Version 0.5 introduced extensive error checking and user feedback when
inputting characters. This was built on top of an existing piece of code.

Here we can see how there was been an addition to the on_command function, in here we
check for the input given to be an integer and between some range of acceptable integers
(0 to 360 for the heading for example) (lines 372 and 378). If that occurs then the user

sees a notification message appear in red that informs him of the error that has occurred.

36

With those fixes the Version 0.5 was finalized and a new version was started. As the final
project was starting to gain the final desired shape the stakeholders where called in for
another meeting to access their opinions. The questions went overall well which shows
how using RAD and diving the work into versions was a good idea.

1. What was your main opinion of the game?, knowing of course that bits were missing
| like it and | see if its potential (4) | think the game needs more work (1)

2. Can you see the game as something that you don’t understand and that you would like
to learn about?

When | look at the game it looks complex and I'm intrigued to learn about it (3) |
understand what is going on but | thing | would still enjoy the game (1) | do not
understand the game at all and | don’t see how | can understand it (1)

3. How are the aesthetics of the game? Do you have any problem navigating the menus?

No (5) Yes (0)

Version 0.6 - addition to game dynamic and aircraft referencing

Version 0.6 introduced a couple of minor additions to the code. The altitude for example
was introduced as one of the planes attributes and it was given the boundaries it needed
in order to be able to change it.

This is the code that is in charge of keeping the user informed with the information from
the aircraft. The heading, speed and altitude are displayed in the form of a single string of
text. In this case, line 453 shows the way the heading is ‘fixed’ so that the user can see it
properly by always being displayed as a 3 number string (30 shows as 030 for example)

37

This screenshot
simply denotes
the introduction
of the altitude
attribute to the
Airplane class.

Furthermore here we can see how PyATC now treats the input of a FL (Flight Level, altitude)
change. It again goes through the logic of determining the upper and lower boundaries of
the possibilities of altitude change and confirms that the input given is in fact an integer
value (line 384), if the user followed the correct criteria whilst writing the command then
the written altitude is the new altitude.

After that, and expanding on what one of the screenshots was carrying | also worked on
the addition of the side bar displaying all the pertinent airplane information.

Here we can see how we display a single line of string for every plane in the list and how
we display its properties. This code is in the update function and therefore updates once
the user has made a change. Here we can see it working.

38

ARRIVING As we can see the planes are displayed with their
attributes; a heading of 029, a speed of 300kts and an
altitude of 2000 ft.

VY011 029 300 FLOZ0
RY327 029 300 FLOZ0
AF061 029 300 FLOZ0

After that the last minor thing | fixed was the ability to write the speed of the planes in kts
and not in its relative pixel unit. Up to now the planes were moving at pixels*3 / second.
This means that if the user wrote 2 then the planes moved at a comfortable rate, but of
course if the user wrote 200kts which is what he should of been writing the game would be
over instantaneously as the planes would of left the airspace. To fix this | changed the
input that the user gave to the computer by diving it by 100

This example really outlines the usefulness of having a class to represent planes as
changing the plane.speed changes it whereas in an array it would be harder to do.

The major change that occurred in PyATC was the introduction of the setup screen. This
screen serves the sole purpose of giving the user the options of choosing his what he
desires for the game that he is about to play. This is time, difficulty and location. For
starters | will make the layout in the Kivy language and then in the next versions | will add
its functionality.

The code is very simple to understand and will take a page worth of space. It will not be
explained in detail as it simply layout code and it is easy to understand and read; but
pretty much what it does is give the user a set of options for each category, as well as a
side panel with access to buttons to continue to the game screen or to be able to go back
to the menu.

39

After this the screen looked like this.

5 mins

Duration

Start Session

Difficulty

" Airports

Back to Menu

And with that screen and the small fixes that was Version 0.6 done.

41

Version 0.7 - clock functionality, class inheritance and score screen

Version 0.7 brought the introduction of the clock to the PyATC simulator. Because the
clock update function that | had until know updated 3 times per second | decided to make
a new update function where | laid the foundation of the clock.

Firstly | made a clock layout by using a label on Kivy :-

Here we can see how in line
106, 107 and 108 we are
creating a label which will
originally have the text of
‘00:00’ but which later on will

of course change into the clock.

Here we can see in line 396 how we start the clock function for the game (3 updates per
sec) and the clock function (1 update per sec)

On the next page we will be able to see how the code is used to make the clock count
upwards in the clock update function

42

This is how the code looks, as we can see it is fairly straight forward; we update each
value of the clock when the value to its right reaches a certain number. for example

x1 X2 x3 x4

0 0O : O 0
00:01... 00:02... 00:03.. (when x4 reaches 9 update x3 to 1 and x4 to 0)... 00:09... 00:10...

After that | made the input from the user be defined as the maximum time before the
game ended.

Here we can see how the the Kivy buttons can either be down or not down; and only one
at a time, therefore because of this we can simply use an easy conditional statement to

43

see which is the time limit, after that you can input the ‘duration_for_session’ as the time
limit and the game will stop when the time limit is reached.

| also used one of the classes as a global variable so that | could access the variable that
was chosen in the setup screen to use in my clock in the session screen.

Here we can see how we declare each screen on the Kivy Screen manager and how
furthermore for the Session Screen we also declare the Session Setup; which is the one
that contains the user input when it refers to the time.

After work on the clock and its implementation was finished it was time to work on the
final screen; the score screen. A similar look was given for this screen. Here is the Kivy

code.

44

Here we can see how this layout follows the standard ‘left pane with button access’ and
‘right pane with content’, in this case the content is another paragraph which will have the
final score after the session ends this score will be given even if the user crashes. The
score is made of the planes he landed and based on the difficulty he had. This is a sample
of it;

Back to Menu

After this was done it was time to work on the next version.

Version 0.8 - landing implementation and different airports

This version brought the implementation of landing into the game, to do this | used the
same thinking and logic behind the plane mid air collision model. But however this time |
used the runway as the ‘collision item’ instead of any other plane. This is how the code
looked.

45

Here we can see how we are using the same proximity warning for an aircraft leaving the
airspace as we use for the aircraft landing, after that we remove the aircraft from the
airspace and add one to the landed aircraft counter, so that later on we can come up with
a score.

This is how we call the landing command, we simply added to the commands list.

We don’t have to do anything
else as the update part
handles the removal of the
aircraft from the screen and
the list of planes in the left bar.

After that it was time to start work on the more airports; by default the airport | have is the
Palma de Mallorca airport. Here are the three airports using the Kivy language as the
layout creator; | won’t show the code as its the same that | use for the other airport.

Los Angeles Intl Airport (LAX)

End game
00:00

Status: Correct

ARRIVING

no arriving flights

BFF] START

ATC says:

46

Palma de Mallorca Intl Airport (PMI)

End game
00:00

Status: Correct

ARRIVING

no arriving flights

ATC says:

chholooy Cen

End game
00:00

Status: Correct
ARRIVING
no arriving flights

OFF

ATC says:

47

After that all | needed to do was do one airport for the tutorial mode; however for this
airport | was going to use an overall simpler layout, one without timer and score screen.
So i copied the code of a single runway airport and moved it into a new class (a new
window in Kivy) called the TutorialScreen, which would be accessed from the ‘Go to
practice airfield’ in the Tutorial screen.

Go back to menu
Commands: SP, FH, FL, CL

Status: Correct

ARRIVING

no arriving flights

ATC says:

¢ LNPUT POV 1O S W

This screen aims to help the user gain control and confidence by providing a more relaxed
and user friendly atmosphere.

And with that screen finished PyATC was mostly finished.

Version 0.9 - final test and runs before delivery to stakeholders

| have tested the final game and | am very happy with the results, | think it covers
everything that | wanted to do and | think it matches the project aims very well. Of course
there are some minor bugs that | have fixed after extensive white box reviewing The first
one was how sometimes the game created too many airplanes at once. Of course this
happened because the planes are created randomly at a rate defined by the difficulty. And
that meant that at any given point the number needed could be generated twice in a row.

48

To fix this | initialized a variable called since_last _plane and made it act as a count up
method so that the wait would always have to be 6 updates (2 seconds) between one
plane creation or another one. Here is the code;

After that | also had some minor problems with the string handling and | realized that | had
mistaken some of the logic; initially | had set that in order for a plane to turn heading the

input had to be in a certain range;

For some reason the circled part of the code didn’t work, and after much testing | decided
to simply implement another simple arithmetic operation. This was a quick fix, but after
trying other methods which seemed better in the beginning none of them worked. So this
was one of the best alternatives | could of used.

49

Furthermore and after about 10 minutes of playing the major problem | found was how |
wasn’t completely comfortable with the way planes were shown in the screen. They were
all white balls and | had to remember which plane was what, to fix this | added a text that
would always follow the planes around; this text would have the plane’s unique ID and
therefore served great when playing with a large amount of planes.

Here is the code and a screenshot of how it looks;

As we can see the only thing we have
done is added a label to each plane, but it
immensely improves the game play, and
it was something that could only be
noticed when one played the game for
some time.

Before After

This were the only problems | could find with the code after 8 versions of RAD
development whereby | also fixed bugs throughout the development.

The fact that | couldn’t find any more problems meant that it was time to give release
PyATC and to have the stakeholders perform Black Box testing.

50

PyATC 1.0 Evaluation

Does PYATC meet the criteria chosen whilst planning?

Let’s review the criteria and then see if PyATC does meet it.

From a design point of view

The design will be modular, each screen will serve a purpose
OK > Classes used as different screens, each screen is different
There will be a title page whereby all features can be accessed
OK > There is the main menu screen which shows all the places the user can go

The screen will have an easy to read feel to it, with black background and contrasting
items such as the runway and planes

OK > The background is black without any background images and with whites and
strong colors to aid contrast and readability

There will be a variety of airports that the user can choose from
OK > There are three airports (LAX, PMI and NWI) and the practice airport
The planes in the screen will randomly appear and the user must guide them

OK > Depending on the difficulty planes appear at a rate; the user commands them
to the landing strip

The users will count with a real time view of what is going on, however all the information
will be reachable through the side bar which will also have the remaining time and a pause
button

OK > There is a real time version which shows the motion taking place, however all
the important information is given by the left panel.

51

Although not graphically extraordinary, the game should still represent the modern looks
the Kivy Ul library

OK > It scales and supports touchscreen interfaces.

Although not very complex graphically, the game should still be intuitive, with special
emphasis on navigating the menus and engaging with the simulation

OK > Each screen has the same layout with easy to read text and available buttons
to navigate.

From a portability and usability point of view

The game should be able to run on Windows, macOS and Linux

OK > The game is written in Python using the Kivy library, both supporting multiple
operating systems

The game will be usable for a variety of computer types (workstations, touchscreen
laptops...) as it will detect and interact with touch

OK >The fact that is written in Python and Kivy (touch support) means that it can be
run in any computer that has the ability to run Python

The game will be playable from different sizes; as it will dynamically adjust to different
screen sizes

OK >Kivy takes care of dynamically adjusting to different sizes, furthermore the way
the screens are written ensures that upon resizing the important part of the screen
always remains visible.

The game will be able to run from low-powered hardware (i.e. Raspberry Pi)

OK > Because the game is written in Python it will be possible to run it from

From a process point of view

The final score will be composed of user changeable values
OK >It is composed of the time and difficulty variables

The timing and location of arriving planes will be randomized within a framework based
upon the selected difficulty

OK > The timing and location have custom scripts which make them random

52

The player will only control planes that are incoming

OK > The player only deals with incoming planes, not with outgoing or even landing
the planes

The player will choose from a variety of difficulties, that will change how often planes are
generated

OK > There is a custom script which makes plane only appear once a random
number is matched

As we can see the final solution, PyATC 1.0, does meet all the criteria set by the
stakeholders and | initially.

Limitation of PYATC 1.0

There are of course certain limitations that exist from the solution, obviously the game
cannot share user data and therefore comparing scores between users can be difficult if
its not done by the users telling each other what they score they got.

After that, the other limitation is the fact that although it allows touch displays, it only
allows keyboard inputs; this can be fixed in two ways;

- The short-term answer if you only have a touchscreen could be to use a built-in
touch keyboard from the screen. Windows has this by default for example

- The long-term answer could be to implement a voice recognition library into the
game and use a microphone or a keyboard as the input devices.

Furthermore, there is no multi-player support, this means that if you want to play the
game with a friend then you have to use two computers; one for each. However if | had
the time and | had done the speech recognition project | would implement a multi-player
mode; whereby one user can control incoming planes and another user can control
departing planes.

Another limitation of the game, more in terms of design, is how this game cannot be re-
sized as it is being played; this is because the speed and angle variables use the distance
over the screen; and if the screen is re-sized this can lead to certain problems. The user
can however pause the game, re-size and then carry on playing. | had an idea on how to
fix this; the theory was that Kivy would detect a moving screen and would send a stop

53

signal to the update functions (motion and timer). However Kivy does not have the ability
to detect this yet and therefore | wasn’t able to complete it.

So, as a recap - the limitations we have are...

Problem Fixable? Difficulty
Network sharing support Implement online game database High
Only semi-functional touch support a) Use touch-screen keyboard Simple
b) Speech recognition Medium
Multi-player support Dependent upon speech recog. Medium
Re-sizing whilst playing game Once Kivy releases movement sensor Medium

Proving that the Ul and main features are effective

The Ul was mostly done in version 0.1, then as development went on things where added
to it; however even at its most initial state (version 0,1) the Ul had a clean look to it which
made it easy to navigate. Furthermore the whole PyATC ecosystem follows a certain
design guidelines;

- The Ul has to be split into two main parts

- The right main part has to have be ability to edit the status of the current screen (close,
go back to menu, go to score screen, etc..etc..) and therefore has to always be the same
size upon re-sizing (typically this is circa 250 pixels

- The left hand side has to have the content of the current screen, with any main text in
contrasting white to the black background (such as the tutorial screen), and any title or
header of a soft color which also contrasts (blue and orange where used mostly).

- Each screen has to have the ability to take you somewhere directly.

- The motion of movements of screen has to follow the ideology that PyATC reads like a
book, so that then when wanting to go from the main menu to anywhere else it goes from
left to right; however when returning to the main menu the screen has to be animated the
other way; from right to left.

After following this main guidelines to make sure that every screen had a similar feel to it |
can happily say that the Ul is effective and that based on what the stakeholders said; it
was easy to navigate in it.

54

Furthermore and now talking about the features | can also happily say that the features
that PyATC has are effective. This was proven when every item on the Success Criteria
was marked as done. The only flaws of main features that PyATC could have are discussed
in ‘Limitations of PyATC’ in page 53.

Of course there were features which ticked the box in the Success Criteria, but that could
of course be improved. For example, “The final score will be composed of user changeable
values”, this is true as it is composed of a combination of the planes landed and the
difficulty in the form of ‘per every extra difficulty level add twice to the score’ however it
could also be improved by having the score composed of more things, here is an idea;

score = landed * difficulty level * (inverse) incidents which were not crashes * time bonus

This score accounts for any incidents (such as having two planes too close, or asking
planes to go faster than they can), it also has a time bonus so that a user is rewarded
more points for playing a 20 min session rather than a 5 min session due to the
concentration needed for the 20 min session.

Furthermore, another example is “There will be a variety of airports that the user can
choose from”, this, although true, doesn’t have an exceptional number of airports,
perhaps this could be improved by either adding more airports, or making a script that
puts runways in a random order everytime (to avoid users getting used to one airport) or
even to have the ability to make your own airports.

Was RAD development the correct development to use?

In my opinion RAD was without a doubt the best method | could of used. | found myself
comfortable in an environment where | could prototype something and then try to fix it
with a couple of tries to later on added to the actual build of the PyATC program.

The way | did this was...

Problem |>| Solution A |>| Solution B |>| Solution Final

\

Day 0 PyATC Development Day x

Here we can see how what | did was prototype and then do improvements until the
problem was solved to then added to the overall PyATC project thus removing the abstract
layer | used during the development of the module.

55

Of course sometimes applying abstraction to the modules wasn’t so beneficial; for
example on the on_collision module | spent more time trying to remove the abstract layers
rather than actually coding it.

But overall | am extremely happy with the result of using RAD. | enjoyed being able to
improve by failing as it taught me about what is considered good practice and what is not;
there was a point for example where | tried to use a large amount of global variables in my
code and after doing some more versions of the fix | decided to use local variables.

Initially 1 was going to use waterfall but | ended up deciding on RAD as | was very exited
about the large amount of prototyping that could be done; | find myself more comfortable
with prototyping and planning than only planning.

PyATC maintenance

There are a wide variety of things that | need to look out for when trying to maintain
PyATC and by using certain methods | tried to avoid making it very uncomfortable for
anyone to try to maintain the code;

For example, apart from Kivy and maths | didn’t use any other libraries; this is a good idea
because if Python or Kivy gets updated by having less libraries you significantly lower your
chances of having problems with the newer versions. An example of this is the clock; |
could of used python.time or any other counting up library but instead | decided to make
my own script using Kivy’s in-built clock.

Furthermore | tried to keep my variables as self explanatory as possible, often avoiding
naming things numerically but rather with names that | would remember, for example,
‘difficulty_hard’ instead of ‘difficulty 3’.

By using this technigue reading this piece of code becomes a much more comfortable task
def airspace_abandon(self):
self.pause switch.disabled = True
Clock.unschedule(self.update _display)
Clock.unschedule(self.update display clock)
self.status label.text = 'Status: [b][color=ff0000]Aircraft left radar[/color][/b]'

We can see how the variables make sense in relation to what is going on in the game.

56

Lastly, | used annotations on specially hard parts of the code, or parts with similar logic
that one could get mixed in, an example of this is in the clock, where | used annotation to
describe which if statement moved which part of the clock

By having those commands | can see which conditional statement does what in case | ever
needed to change a single ‘hand’ of the clock.

On the other hand, and regarding code sustainability we could talk about how the game
will be maintained for the users.

According to research I've done, air traffic control simulators; although not very popular,
are niche and have had a steady customer line for years, furthermore the air traffic control
simulator that are available online have been there for years and still have the same
customer base. This means that PyATC will not be a vuvuzela-piece-of-software, this
relating to the short period of time in 2012 where, due to the South African Football World
Cups, vuvuzela sales raised by the millions for a short period of time.

Furthermore, and thanks to the fact that PyATC only uses Python and Kivy (both being
continuously supported and update software) it is very probable that PyATC would still be
able to run on computers for years to come.

57

Stakeholders final opinion of PyATC 1.0

After showing the game to all of my stakeholders they were all extremely happy with the
result. This document therefore certifies that the software solution, PyATC, has met all of
the success criteria.

Signed,

PyATC Stakeholders

Alan Harvey Matthew Beimborn Harry Dalton

Elliott Attew Marlowe Buchannan

58

	Brief Description
	The problem and the ease to solve it using a compu
	Identification of stakeholders
	What are the stakeholders interested in? - intervi
	Why other software solutions will not fix the prob
	What does the research tell us about how PyATC sho
	What will PyATC inherit regarding design and funct
	Limitations within PyATC
	System Requirements
	Why was Kivy chosen and not other alternatives
	What are the stakeholders interested in? - intervi
	Success Criteria
	Design Methodology
	Main overview of code structure – pseudo code and
	Main overview of code structure – visual
	Data Structures
	Development methodology
	How the project will be split into different parts
	Version 0.1 - main aesthetics and menu navigation
	Version 0.2 - initial motion testing
	Version 0.3 - motion implementation
	Version 0.4 - addition of functionality to game sc
	Version 0.5 - further game screen development and
	Version 0.6 - addition to game dynamic and aircraf
	Version 0.7 - clock functionality, class inheritan
	Version 0.8 - landing implementation and different
	Version 0.9 - final test and runs before delivery
	Does PyATC meet the criteria chosen whilst plannin
	Limitation of PyATC 1.0
	Proving that the UI and main features are effectiv
	Was RAD development the correct development to use
	PyATC maintenance
	Stakeholders final opinion of PyATC 1.0

