
Construction of an 8bit based CPU and
its Boolean logic based components

Carlos Lagoa

2

INDEX

Content Description Page

Creation Process
Progression Record OCR based document 3
Mentoring Review A review of how mentoring was 15
Time Management A review of how time management went 16
Presentation The slides & review of the presentation 21

Main Information
Quick Description Overview of project in FAQ form 29
Bibliography Reference list of sources used 30
Deciding on a title Explaining how title was chosen 31

Electronics
The Transistor A look at the simplest components 32
Resistance Resistance and how is it used 33
The Capacitor Brief look and usage examples 33
Binary & Boolean How to decode the information in binary 34
Logic Gates Transistors joining to make logic 35

General Knowledge
Background Background information on the processor 37
Part Dissection Using knowledge from the above section 39
FDE and Buses I Brief look at the cycle and intro to buses 39
Registers Look at the role registers play 40
FDE and Buses II Combining the last gathered knowledge 44

SAP-1 Construction

Clock Controls the speed of computer 44
Bus and Registers Implementation of buses and registers 47
ALU The Arithmetic and Logic Unit 51
RAM Making the memory 58
Program Counter Where instructions are listed 62
Hex Decoder Converting the output 64
Additional projects Seeing what else could be done 66

3

Project Progression Record
Level 3 Extended Project Qualification

This form should be completed by the learner
Name:Carlos Lagoa Centre: Wymondham College
Candidate no: Centre no:

Current programme of study: A LEVEL
Qualification Type Level Subject

Before starting this form you should have already explored various themes and ideas for your
project and proposed a suitable topic to your mentor/supervisor
Date Project started: October 2016
Project Topic: Construction of an 8bit CPU and its Boolean logic based components.
Rationale: why you want to do this project and how it links to progression
plans/current courses/personal interest

I want to do this project because I am eager to learn more about electronics and their
past. I want to take Computer Science at university and this links nicely with the
subject.

Not only due to university, but also personally I find electronics and their logic
fascinating, being able to build hardware that later on can be linked with software to
make pretty much anything.

Aims and Objectives: What outcome(s) do you hope to achieve. What skills are you
aiming to develop?

1. Time management

2. Research Skills

3. Electronics knowledge, not only theoretically but also being able to build
and troubleshoot circuits

4. Ability to express my self when doing a project that needs to inform people

4

Initial Planning
What range of resources might you use/what types of research might you
complete……e.g. specialist materials/workshop space. Books/academic journals etc.

The resources I will need will be mostly software based, I will need one or more pieces
of software for the circuits creations and circuit screenshots

Research wise I will need books, most notably;
- But how do It know?, by J Clark Scott
- Digital Computer Electronics, by Albert Malvino
- Code: the hidden language of computer hardware and software, by Charles Petzold

Furthermore I will also use the internet and other software;
- Websites like SparkFun Electronics and other specialist websites, articles or journals
- Circuit simulation/rendering software and YouTube to offer more interactive solutions

What factors might you need to take into account when planning how to manage your
project?

I will need to take into account the fact that there will be three main parts which can
almost work independently from each other. This means that if I believe that I am stuck
in a certain task I can switch to the next part and come back to that task later on. This
is important to take into consideration because it will allow for more active time
management which in turn could make the over all planning fail safe to an extend.

How will you plan to bring your project in for the deadline? You should create a
timeline.

I will do a Gantt Chart as a way to embrace the modular approach to my project and as
a way to manage my time effectively. Furthermore by having the visual aid in the Gantt
Chart it will be easy to reschedule an event if needed

Supervisor

Signed
Date

5

Mid Project Review
Date: February 2017
How much progress have you made in meeting your outcomes?

So far I have managed to meet all of my major deadlines, with some problems on
meeting the lower priority deadlines, which appear more often than major deadlines,
however it was possible to meet the major deadlines due to the Gantt Chart which
allowed for rescheduling and therefore always being able to do something when the
task that was supposed to be done couldn’t be done.

How has your project changed or evolved?

It has changed in the way that initially I decided to design the circuits and then build
them in order to prove that it worked. However, after using a variety of available
software for a couple of hours I realized that it was straight forward and interactive to
perform simulations, it was also simpler to troubleshoot once in a simulation software
rather than in real life. With that in mind and with the intention of reducing the large
work load it was decided that although some parts would be built to prove they worked
the actual processor would be simulated on a software and therefore the results of the
project would be in a virtual form.

Later on this idea was reinforced by the fact that I am an international student and
transportation of a virtual 8bit computer is infinitely better than transportation of a
physical one.

On a different note, the project has recently evolved in terms of content, with a new
structure that separates everything in 3 parts.

Firstly, there is an overview of the main electronic components used in the project

Secondly, there is an overview of the history and the theory behind the processor and
how it works on an abstract level

Thirdly, the first and second part come together in a series of chapters that explain
how each part of the processor works

This, once more, enhances the time management by adding modular and independent
sectors to the project.

What have been the strengths/weaknesses with your project management so far?

The strengths have been without doubt being able to organize everything on a
modular point of view and then put it on a ‘global’ perspective thanks to the Gantt
Chart, it has been very simple to re-organize any task given any problem arose.

6

Weaknesses have included the reduced electronics knowledge (experienced mostly at
the very beginning of the project), selecting the appropriate software for each tasks
and above all the work load in the first stages of the project as it was decided to work
sequentially through the tasks instead of being able to switch between one and
another, which lead to boredom (as you were always doing the same thing), that
boredom then drove me to even avoiding working on the EPQ as I knew what I was
going to have to do something which I was tired of doing instead of being able to move
to something I found more challenging

How are you evidencing the research you have done and how you are managing your
project?

To evidence the research I have done a page on the resources from which I based my
self upon, and then at the end of each page I have a single line whereby I mention
which, if any, resources I have relied on in order to write a paragraph, diagram, section
or even page. This allows the reader to then later on go to page where all the sources
are mentioned and reference it back.

I am managing my project through two main methods, the first one is the Gantt Chart,
this allows me to assess my position, what should be prioritized and what can be
rescheduled. Furthermore and to review my Gantt Chart and ‘Monthly goals’ I have
meetings once a fortnight with my mentor.

With my mentor I discuss the future of the project and any arising problems I think I
could have, it is beneficial to talk to him because he understands electronics and
therefore can see and rank viable alternatives that I come up with to any problem, for
example the problem with deciding how would I show the processor once finished if I
couldn’t build it all due to transportation and work load problems

What do you still need to do?

I still need to finish the main build, as time goes by I design components individually to
prove their work and make screenshots of them, however - I still need to do one design
whereby all the designs are joined in the software of my choice.

Apart from that I still need to do half of the last section (the one where I explain how to
build certain components of the processor) and one fifth of the first section (the one
where I review the electronics components)
Supervisor

Signed:
Date:

7

End of Project
Outcome Evidence – where can it be found?

E.g. log book, folder etc.
Exploration of a range of ideas for your project

My project could of taken a completely different
direction if it wasn’t because of the research
done, under the ‘Information’ section in the
index it is possible to find a category which
shows the ideas that lead to the final decision of
this project and furthermore which other ideas
where discarded.

However after further researching and planning
the content of a few theoretical project
prototypes I soon discarded all but one of the
options.

Such information can be found on the
first pages of the write up for the
project. The page that is used for this
simply explains which is that I
wanted to learn about vaguely, then
presents a couple of ideas and
explains why other ideas where not
suitable and why this one was
chosen. In the page it can also be
found a time representation of how
the ideas and project concepts
evolved as research went by.

How you have managed your time

My time has been managed through the Gantt
Chart which later on was constructed of
monthly smaller Gantt Charts which allowed me
to focus on less things and therefore be more
efficient. The monthly Gantt Charts where
approved and coordinated (so I wouldn’t fall
behind either time-management wise or
content wise) by my mentor, whom I visited
once a fortnight.

If we were to split our visit monthly, the first
meeting would mostly be about approving my
month-long Gantt chart and explaining why I
would want to move something far away or
closer to me (if I ever did), then the second
meeting was about simply checking how I was
doing and if I was managing it okay. I could also
ask for help in certain areas, for example on
how to explain concepts easier.

Overall the Gantt Chart-Mentor method of time
management was excellent. In my opinion, it
was friendly and approachable enough for me
to propose changes and ask for help, but it was

Within the write up and under the
‘Information’ section, with the title
‘Time Management’ it is possible to
see the Major Gantt Chart, along with
the monthly Gantt Charts composing
it. Furthermore it is also possible to
see the outcome of the meetings
with my mentor as well as any
changes on the original schedule.

8

also challenging and well done enough for me
to not often want to do changes or ask for help.

Use of a wide range of research and resources

The evidence of me using a wide range or
research and resources lies everywhere in the
project.

An example of this are the visual aids used in
the project, almost every diagram has been
based upon the original diagram which was
found in the information researched. Please
note, by saying information researched I mean
chapters in books, articles online, first hand
research and videos mostly.

The way things are explained in the project
makes it, hopefully, possible for someone
non-specialist in the matter to understand what
is going on. Therefore I have used a lot of
examples and metaphors which relate to real
world examples.

Like it is commonly said, the best way to ensure
you have learned something is to be able to
explain it. Therefore and with that in mind I
consider my project to have a wide range of
resources and research as it has a wide variety
of friendly explanations written by me, which I
could not of written if it wasn’t because of the
wide research and points of view I have
experienced whilst working on the project.

Furthermore, the project has three main
sections, and each section has to reach to a
different branch of information gathering in
order to be able to exist. For example, the
second part of the project (the one that links to
the past, and presents the abstract theoretical
use of the components) used mostly the
information from the three main books that I
used in the project, whereas the third part (the
one whereby, and thanks to the
before-gathered knowledge, explanations on

The evidence for the direct use of
resources can be found in the bottom
of the page whereby there is a list of
the sources used.

Later on, if the reader is interested
more in the resources and research
material there is a specific part, on
the first couple of pages, whereby it
is possible to get more information
on each item of research, such as
books, articles and videos.

9

how each component work and is constructed
are shown) used mostly the help from other
sources such as videos and visual aid more than
anything.

Each of the three parts couldn’t exist without
the other two, however they all offer different
aspects of knowledge (one more fact based,
one more abstract and another one more
imaginative) to the reader and that is what
makes the project use such a wide variety of
sources.

Evaluated research and selected appropriate
research

During the time where I decided the title of the
project and afterwards where I decided the
content of the project I used a wide variety of
research sources. This allowed me to plan well
towards what my project should look like which
in turn helped me with time management and
furthermore knowing which of the wide
research material I should keep near by in order
to write about it later.

Also, during the time where I was actually
writing the chapters, and because my project is
aimed to non-specialist or specialist wanting to
learn more in depth, I had to do extensive
researching since I wanted to base my writing
upon something which was easy enough to
understand for me whilst reading it that I could
mold the writing to my own writing style and
add my own examples and diagrams. But it also
had to be a source which was interesting,
challenging and useful for the future, so that
the specialist could also use this as a base for
his own extended knowledge.

A simple example of this could be
that whilst doing the labeling for the
circuits I had to use the specialist
terminology (Vcc instead of
something like ‘Battery Here’ for
example), this was so that if there
was anyone that wanted to further
on their knowledge after reading my
project they wouldn’t find it difficult
to understand how components they
have already seen are labeled.

Another example of how I have
evaluated my research can be seen
in the Bibliography, where
information is being gathered from
places ranging from hobbyist
electronic websites to scientific
journals. As sections came to an end I
chose slightly more advanced
material simply because the reader
had gained knowledge as he read
through the chapters on the section,
thus giving me the opportunity to
select more knowledge-appropriate
research.

How you made decisions and solved problems

Decisions, such as the one on what content to
have on my projects, were made after deciding
the overall aim of my project and what I wanted
to achieve. After I had a clear idea on my head

The biggest evidence of decision
making and problem solving is within
the ‘Mentoring’ section, whereby
there was a problem that had to be
handled, and that was the increased
work load attached to physically

10

of what it was that I wanted to achieve it was
really easy to make decisions which before
could seem difficult. For example the decision
of knowing which sources I wanted to use was
fairly straight forward and non-problematic
after knowing that my aims where to inform the
non-specialists and further on the knowledge
from those that are specialists in the area but
not on this topic.

As for problem solving, the way problems were
solved was slightly similar to how decisions
were made in the way that the final aim was
taken into consideration. In the case of problem
solving the aim of the project and its content
where presented against the problem and an
interpretation of how much the final project aim
was followed under the possible solutions was
done, the solution that changed the final project
less was the one that was followed. When
making the decision other factors where taken
into account such as the increased workload
that the given solution could bring (and time
consumed) or the repetition of content if the
project was regarding content.

The outcome of using this generalized idea for
solving problems and making decisions allowed
everything to be put in the same perspective
(as every issue and decision was treated the
same). After a couple of decisions where made
and the method had been carefully followed
every problem appeared not as an actual
problem but as a challenging quest to carry on
with the project just as we would normally do.
Problems were solved faster and decision were
arranged better, which resulted in an overall
increase in the quality of the project in the
given time we had.

Please note, sometimes solving a problem and
coming up with a decision where the same
thing so both methods where used.

building the processor and the fact
that I could only get a chance of
building the processor for around 1h
or 2h a week.

Once this problem was discovered,
there were a series of solutions
offered; the two strongest ones
where to either remove the
processor from the Electronics Club
(which is where I physically build my
components, as there is a safe
atmosphere and a large variety of
electronics to use) and have it with
me at all times or to build it on the a
special software and have it on
paper.

The final decision was to have the
processor within the software, as
physically carrying a processor with
me was incredibly inconvenient as I
am an international student.

How you used technology – where appropriate The evidence for this can be found
along the project, especially at

11

Within the project I used technology for a
variety of things, of course to actually write the
project and research it a computer was used
but furthermore there were a variety of
software solutions used throughout the project.

I used mainly two different programs at
different stages of the project in order to
represent and simulate the circuit designs that I
needed to do as the project went on.
Furthermore when I was building physical
components to prove that what I had written
worked I used one more piece of software in
order to convert my designs into the appropiate
circuit models, so that then I could print it and
build the circuit.

‘SAP-1 Construction’ section which is
filled with designs of circuits that
carry on the tasks that the computer
has to do.

Sometimes the designs are more or
less abstract, but that simply
changes according to the thing being
explained and how abstract the
explanation is.

Presentation given to an audience

There was a presentation given to the audience
which aimed to cover two different parts.

The first part was the project by itself, whereby I
explained what the project was about and how
it could personally help me in the future. The
second part was about the process of creating
the project, this means that I talked about what
I learned from managing such a large project,
what things I considered that went well and not
so well and what would I change in the future if
I were to do it again.

I used the presentations for two different
things; I used the ‘project’ part of the
presentation as a way to check that everyone
understood what I was trying to explain as I was
trying to show them some of the electronic
concepts discussed in the project. As my
audience in the presentation were
non-specialist mostly, if they could understand
what I meant then non-specialists reading my
project would too understand what I meant
which was one of my initial aims.

Secondly, I used the ‘process of creation’ side of
the presentation in order to assess the external

The slides of the presentation and
the reviews done by the audience are
located within the ‘creation process’
section in the project.

The reviews are made by teachers,
however I have also received very
helpful feedback from colleagues
who filled in the same paper as they
where in the presentation.

12

opinions about how I managed my project, my
time and my resources. This assessment could
be reinforced when at the end of the
presentation I had the chance to be asked more
questions and answer them (mostly about the
process of creation).

Furthermore I was also given a sheet of paper
containing what the audience thought of my
presentation, this gave me a view on how other
people viewed the project and gave me a very
good insight into where I was in terms of
friendly language and approachable content.

Making links to HE/Career

I am hoping to study Computer Science in
university and in special Robotics, as it is an
extremely interesting subject and one of the
fastest developing industries right now,
furthermore Robotics combines the
software-side of knowledge and the hardware
side, which is something that not all Computer
Science careers offer (web development for
example).

It is because of this that this project will help me
in the nearby future as it has laid the foundation
on what I have to learn regarding hardware.
After this I can go on and learn more about
software and hardware in separate, but the
opportunity to do this project has given me the
chance to do something I hadn’t done until now,
which is realize how they combine on the most
basic level.

The evidence of the links I want to
make with Robotics are everywhere
in the project but specially in the last
section, ‘SAP-1 Construction’ where
the working of components still
present in nowadays computers are
explained.

The last chapter of the last section
then explains how the project could
be extended and how I would want to
extend it which once again shows my
interest to the career I want to do
and how this project links with it.

How you have reflected on your project
management skills and the quality of your
outcome.

The project was been a pleasure to do, it is
extremely accurate in regards to the initial aim
planned months in advance and that just
denotes how useful it was to plan in advance
and use Gantt charts to be able to have a span
of time to do everything, even take a break.

The evidence for this is on the final
result, which offers a wide variety of
topics and how the Gantt chart and
mentor meetings reviews went on
(without any major problems and
with, in the case of the Gantt chart, a
wide span of time to be able to
reschedule the items in the monthly
chart)

13

Mentoring was another great idea as it allowed
me to have a perspective point of view on the
overall project and therefore there was always
someone that could assess my project apart
from me, which was extremely useful for things
like preparing the presentation.

Through the excellent time management and
mentoring my project grew in quality and
furthermore dissolved any problem that came
up in less than one week (which was enough for
me to spend time thinking about a solution, and
then working on it to later on present it in the
meetings with my mentor)

There were no major problems with either the
content and time management and the project
was written with a wide range of research,
which only added the quality of the project, as I
could focus all my time into writing the content
and not into being always solving problems due
to planning problems.

On-going evaluation

The process of the creating the project was very
eye opening as it was the first independent
project I did, I further developed my research
and writing techniques and had a go for the first
time at time managing which went relatively
well, any problems that were not foreseen in
the initial planning and then appeared
throughout the project were solved to a really
high standard and I’m confident I will only
improve from now on.

If I were to do the problem again I would design
more independent sections and equally sized
chapters, as this was one of the biggest
problems I faced; allowing 4 days to write about
chapter ‘a’ - lasting 2 pages, and then allowing
the same time to write about chapter ‘b’ which
lasted 7 pages, Overall the creation process
was smooth and problem free.

The evidence for this can be seen in
the comparison between the Gantt
chart and the write up, which don’t
have so many differences and
therefore shows the careful planning
and extensive problem solving and
decision making that went into the
project. The evidence for this can
also be found on the final evaluation.

Date of submission: Student signature:
Supervisor signature:

14

Final Evaluation

Overall I was extremely happy with the project and how it went. This experience has prepared me for
bigger projects and how to handle them, this will be especially useful in university as there are large
projects to work on. I have been able to extend and enhance my time managing skills, an example of this
could be that, before when I wanted to check my progress on a project, I would look at how many pages
I’d written, but now, that I have been able to develop my time managing strategies, I look at the progress
on the Gantt chart or time keeping equipment I have. Furthermore, not only has this prepared me for
university in terms of managing but also in terms of the actual knowledge. I now have more background
on the basic electronic functioning of a computer, this means that once in university I will be able to
extend this knowledge.

There are many things that went well. One of the things that went the best was the tone and user
friendliness of the project in terms of wording and diagrams as it greatly reassembled the original aim of
making this project for a non-specialist. This was reinforced when in the presentation I used the tone and
definitions that are used in the project and people understood what I was saying. This is extremely
beneficial for the project as it is essential that it is interesting and understandable. Another thing that
went extremely well was the modularity of the project. This refers to how the three sections were so
modular from each other that if one was to read only one section, the reader would understand what is
being discussed. However if he were to read all three he would be able to appreciate how the knowledge
extends from section to section.

There are of course things that I would change if I had the chance to, for example, I would make
mentoring meetings happen when in need and not upon a fixed 14 day period. This is because sometimes
I had a problem that I needed to discuss, and I had to wait around 10 days to be able to speak to my
mentor again, this wasn’t such a large problem however because I could move about the things I had to
do so that I would always be occupied with something to do, however it is definitely something which I
would change. Something I would change is my writing style when it came to the third section as I would
start writing before I had read all the material I needed to read about, that meant that often I had to
delete entire pages because I found better and more efficient ways of explaining the same concept.

Even though the project went extremely well, there are some things I which would of been even better if
I would of taken a different course of action. In special I would of liked to make the decision of not making
the physical build a long time before I did, this would of made the project better because I would of had
more time to focus on the parts which I was actually going to present.

The presentation I did on the project went well too, the slides and reviews can be found later on, but
overall I was really pleased. I was nervous so presentation skills like eye contact could of been better,
however I was happy with the mark I got. The explanations were understandable and the answers to the
questions asked by the audience where quick and to the point, answering their questions.

As final thoughts I would recommend to anyone taking on an electronics project to base themselves from
as much information as they can, I struggled to do so for the initial stages and once I started doing I felt
really confident with the work I’d done and with all the information I had gathered. I look forward to
extending my knowledge and finding ways to apply it to my Computer Science course, especially in the
robotics branch.

15

CREATION PROCESS: MENTORING REVIEW

Mentoring played an important role in the process of creating this project. It helped with things such as
time management and content in the project. Meetings with a mentor occurred once a fortnight, the first
fortnight of the month was to create a monthly set of tasks I would have to carry on, and the second
fortnight of the month (mid month) was mainly used to review what I’d done so far and solve any
problems that came up, typically within the last 2 weeks. Here you can see a review of the meetings
with the major occurrences being listed. The meetings happened on Wednesdays, which is when
Electronics club was on, due to vacation and other reasons some meetings were done as emails.

NOVEMBER 2 MEETING
This meeting was used mainly for talking about what I wanted to achieve with the project.

NOVEMBER 16 MEETING
This meeting was used to review and get a better idea on the content which the project would have, once
the final content was decided a few days later I started the write up.

DECEMBER 7 & 14 MEETING
This meetings were canceled due to mocks.

JANUARY 4 MEETING
This meeting was simply used to review how the write up was going on the first section, nothing major
was changed. The ‘Resistance’ part of section one was shortened a bit after some talking. The best
software was also reviewed for doing a variety of actions, to finally decide that more than one program
should be used.

JANUARY 18 MEETING
This meeting was about the start of write up on a new section, General Knowledge. We talked about how
much history we would want that section to have and why. Furthermore I also did some hardware building
on Electronics club and was assisted by my mentor when I ran into problems.

FEBRUARY 8 MEETING
This meeting was mostly about the General Knowledge section and about polishing off anything that
could be considered inaccurate. A quick run of a ‘prototype presentation’ which I prepared last month was
done for my mentor and opinions where given.

FEBRUARY 22 MEETING
In this meeting we started talking about the work on the last section, the SAP-1 Construction. Furthermore
sections one and two were checked for mistakes and the design of some basic components started
digitally.

The biggest change that this meeting brought was the decision of presenting the final build of the
processor in the form of paper as opposed to presenting an actual physical build. This was decided due to
workload problems, due to the fact that I wasn’t able to access the physical build that often if I didn’t have
it with me, but if I had it with me then I wasn’t able to transport it with me because I am an international

16

student.

MARCH 8 MEETING
This meeting simply focused on reviewing how the write up on the Construction side was going.

LAST MINUTE MARCH 14 MEETING
This small meeting was a last check on the presentation which I would have to give the following day.

MARCH 22 MEETING
This meeting was one of the last formal meetings that we would have, we reviewed any problems that the
Constructions section brought around (mostly software wise). After this meeting we arranged to speak
once I was back in school, April the 19th, where I would have finished the project and done the EPQ
evaluation.

APRIL 19 MEETING
This meeting simply was to have a small check on the project and allow my mentor to sign the appropiate
paperwork.

CREATION PROCESS: TIME MANAGEMENT

This project was managed by a series of Gantt Charts, there was a major Gantt Chart, which spans for the
whole duration of the project and measured milestones, such as “finished chapters on electronics”.

Furthermore there is a series of smaller Gantt Charts, intended to measure the shorter spans of time,
lasting around month. This smaller Gantt Charts were reviewed in meetings once a fortnight with my
mentor.

In the next couple of pages we will be able to see all the Gantt charts that were done, the diagram below
is the global Gantt chart, orientated in landscape as it was originally designed, after that the monthly
Gantt charts will be shown.

17

GLOBAL GANTT CHART

The colors displayed in the chart have the following meaning

Title Decided! Start of project (end of October)

Decide on structure and content, aims, audience and start working on resource gathering

Work on Electronics section, test different software for building task, start looking at presentation and start building simple hardware

Start building individual parts and work on General Knowledge area

Finish off any unfinished parts on sections 1 and 2 and correct them, do section on construction, finish screenshots of components, prepare
presentation and finish project progression report.

18

MONTHLY GANTT CHART NOVEMBER (up) MONTHLY GANTT CHART JANUARY (down)

19

MONTHLY GANTT CHART FEBRUARY (up) MONTHLY GANTT CHART MARCH (down)

future

20

MONTHLY GANTT CHART APRIL

This is the last Gantt Chart made and only covers about half a month as the deadline was days after the 15th of April. As it can be seen the Gantt charts
along the months are made up of little block which allow for rescheduling in case it is needed.

Overall, I was very pleased with time management as it was interesting enough for me to be engaged, but also had some breaks which allowed me to relax
and not get too stressed, like for example, when there was a couple of days where I didn’t have to write anything in mid January and I only had to test
components. That ‘free time’ allowed me to sit back and get ready to do more work, when in fact I was still testing components and therefore doing work.

21

CREATION PROCESS: PRESENTATION

22

23

24

In the following pages we can see the reviews that were made based on the presentation

25

placeholder 1a

26

placeholder 1b

27

placeholder 2a

28

placeholder 2b

29

MAIN INFORMATION: QUICK DESCRIPTION

What is it about?

This project is about understanding the components that make a very simple 8-bit computer. After
understanding the components, we combine them and design the 8-bit computer, called the SAP-1

Why is it called the SAP-1?

In the book Digital Computer Electronics, by Albert Malvino, he talks about a very simple architecture
(that means the way components interact with each other) called the SAP-1, Simple As Possible, which is
the one that we are trying to replicate

What does 8-bit mean?

8-bit simply defines that the maximum size the computer can operate is a value (in denary) combined of
8 bits (in binary), this means that, for example, the maximum addition this computer can do is an addition
with the result of 256.

How is this project structured?

This project counts with 3 sections which vary in content but which need each other in order for what is
covered in them to make sense.

The first section simply introduces the user to the most common electronic concepts, putting a meaning
on terms like resistance or explaining how a transistor works.

The second section expands the reader’s knowledge on another direction by introducing an abstract and
theoretical layer which is used to explain the functioning of every component in the processor as well as
giving some background knowledge.

The third section joins the knowledge gathered in the two sections above and simply instructs the user
how to build the components that go in the processor (learned in section two) by using simple
components (learned in section one), as the chapters go by the two main ways of building it are covered.

Who is this project made for?

This project is made for a range of people, ideally it is made for a non-specialist who wants to learn about
the functioning of a processor but it can also be for someone who is computer science or electronics
orientated that wants to know more about the subject. The project is filled with metaphors and examples
for the understanding of a non-specialist in the matter.

How did you make this project?

This piece of work combines research, personal interest and mentoring to make, using time management
strategies, a hopefully informing and interesting project.

30

MAIN INFORMATION: BIBLIOGRAPHY

Albert P. Malvino and Jerald A. Brown. 1997. Digital Computer Electronics. 3rd Edition. USA. McGraw
Hill. Print. Popular book among people who want to gather basic electronics knowledge, gave me abstract
knowledge and in this book the computer architecture we are for section 3 doing is described.

J. Clark Scott. 2009. But How Do It Know? - The Basic Principles of Computers for Everyone. USA. John
C. Scott and Oldsmar. Print. Strong abstract knowledge, served as a bridge between the sometimes more
complicated knowledge of Malvino’s Digital Computer Electronics and Petzold’s CODE

Charles Petzold. 2000. CODE: the Hidden Language of Computer Hardware and Software. Washington,
USA. Microsoft Press. Print. Book with good reputation for understanding the beginning of computation,
its language, explanations and tone where one of my inspirations.

M. D. Godfrey, D. F. Hendry. 2002. The computer as Von Neumann planned it. IEEE Annals of the
History of Computing (Volume: 15, Issue: 1, 1993). Journal. A very fact based approach to the architecture
reviewed in section 2.

Professor David B Haviland. 2002. The Transistor - History. Nobelprize.org Novel Media.
<https://www.nobelprize.org/educational/physics/transistor/history/>. Journal. Background and
information on the transistor, the transistor leads to the biggest part of this project; logic.

Wanlass, C. L. "Static-dynamic design of flip-flop circuits." Transactions of the I.R.E. Professional
Group on Electronic Computers PGEC-1.1 (1952): 6-18. Journal. The journals were of great use when
needing to extend my knowledge more in order to explain things better, in this case for section 3.

"A History of Commodore’s 8-bit Computers." Low End Mac. N.p., 13 Oct. 2016. Mar. 2017. WWW
page. This article reviewed some of the popular uses given to 8bit computers, This was used on the last
chapter. <http://lowendmac.com/2015/a-history-of-commodores-8-bit-computers/>

“How to build an 8bit computer from scratch. January 2017.
<http://www.instructables.com/id/How-to-Build-an-8-Bit-Computer/>. WWW page. This web page and
forum receiving thousands of visits was my initial inspiration for the project

"SparkFun Parts Kit." SparkFun Electronics. SparkFun, n.d. Nov. 2017. WWW page. Used to learn
about capacitors on a basic level <https://www.sparkfun.com/tutorials/273>

"How Capacitors Work." HowStuffWorks. N.p., 17 Sept. 2007. Nov 2016. WWW page. Used to learn
more in depth about capacitors. <http://electronics.howstuffworks.com/capacitor>

"SparkFun Inventor's Kit - V3.2." Learn at SparkFun Electronics. SparkFun, n.d. Nov. 2016. WWW
page. This was used as a global outlook at all the major components.
<https://www.sparkfun.com/products/retired/12060>

Electrical Resistance <http://www.rapidtables.com/electric/Resistance.htm>. WWW page. Factual
knowledge about resistance, for section 1

HowStuffWorks. "Static RAM - How RAM Works | HowStuffWorks." RAM. N.p., n.d. Jan. 2017. WWW
page. Knowledge extension on RAM. <http://computer.howstuffworks.com/ram2>

"COUNTERS." Counters | Types of Counters, Binary Ripple Counter, Ring Counter, BCD Counter,
Decade counter, Up down Counter, Frequency Counter. DAE Notes Electronics, n.d. Jan. 2017. WWW page.
This article was useful when talking about electrical devices that can count up automatically.
<http://www.daenotes.com/electronics/digital-electronics/counters-types-of-counters>

January 2017. <https://www.youtube.com/user/eaterbc>. Video(s). This series of videos were used
as inspiration and visual aid when learning about the 8bit computer construction, in section 3

January 2017. <https://www.youtube.com/user/madplaysHD>. Video(s).This series of videos were
used as inspiration and visual aid when learning about the 8bit computer construction, section

31

MAIN INFORMATION: DECIDING ON A TITLE

There have been many titles that this project could of had, of course every title would mean a slightly
different structure and content. As soon as I decided to do an EPQ I knew I wanted it to be on something
Computer Science related.

As Year 13 started I was involved in a series of electronic and hardware related projects, for example, I
had done small projects like building an ultrasonic sensor which could sense movement in a desired
distance. I even was started the Electronics Club along a couple of friends, which gained popularity,
bringing a couple of students per year.

With electronics slowly becoming a great part of my computer science interests I decided to do my project
on something electronics related, and after much thought I decided to build a calculator and do my EPQ
on that. The title was “Building a calculator with materials from the 1970’s”, as I had been reading in
special about the start of the personal computer and microchip revolution, with companies such as HP
and Apple settling in Silicon Valley.

I furthered my knowledge on how a calculator worked and discovered that although extremely interesting,
the idea of building a calculator had a flaw. It was either minimal work load (for the length of time given to
complete the EPQ) due to the fact that simple calculators where, in fact, fairly simple to build yet very
repetitive, or an extreme work load, this is because of the scientific branch of calculators which started
with the HP-35 in 1972. Scientific calculators are far too complicated to talk about for the time given in
the EPQ. Therefore the idea of the calculator was dismissed, yet another idea came up.

As I became more and more interested in the 1970’s and 1980’s computer industry, even reading the
Steve Jobs biography (which talks about the personal computer industry and stories as such in that time)
I decided that I wanted to build something that wasn’t far off from a calculator, I wanted to build the
brains of a calculator. Therefore from that point on the title became “Building a processor”

As microchips became smaller and cheaper, such as the INTEL 4004, they were put into calculators,
computers and even military planes. After some research I decided to base my processor on an 8-bit MOS
Technology 6502 microchip, released in the 1975, which revolutionized the personal computer industry
due to its price. After that the project was given its final title, “Construction of an 8bit CPU and its Boolean
logic based components”.

32

ELECTRONICS: THE TRANSISTOR

To fulfill the knowledge that this project requires, it is necessary to know about a few electronic
components and concepts – one of them being the transistor.

The transistor was first invented in the late 1900’s, but its electronic application only began in the late
1940’s in Bell Labs by J. Bardeen, W. Shockley and W. Brattain. The transistor can be thought of as switch
but with a few new properties; firstly, it requires no moving parts, secondly, it can be functional on a
microscopic level and third, it doesn’t need interaction from humans to work (for example someone
turning it on and off)

Transistors have three parts, the ‘Receiver’ can be thought of as the input, then the ‘Emitter’ can be
thought of as the output, for last the ‘Base’ which is a part that makes a transistor give a signal or not.
Transistors play an important part in electronics as it is a cheap and effective way of performing two tasks;
switching and amplifying.

Firstly it can act as a switch, this is thanks to the fact that the base of the transistor is a semi conductive
material and therefore provides a path for the electrons at the receiver to travel to the emitter. Please
allow a bit of abstraction to understand the concept; a current of x can be applied to the base so that a
current of 150x can flow from the receiver to the emitter.

Secondly, a transistor can act as an amplifier, this is when a signal of x is received at the receiver and a
signal of 2x is given off at the emitter. An example of a practical use of this can be with a ‘hearing aid’,
where a signal of x ‘noise’ is received into the machine and then a signal of 2x ‘noise’ is played through
the speakers for the person wearing them. More on how this effect actually takes place will be covered as
the project follows.

33

ELECTRONICS: RESISTANCE

Resistance is something which will not be covered to a great extend in this project however it is good to
understand what it can do in. Resistance, in simple terms, is the disencouragement of movement of
electrons within the conducting material (the wire for example). By having resistance the flow of
electrons is reduced and therefore the current reaching a terminal is lowered. Resistors can generate
resistance on different amounts and they are widely used in circuits, for example, everytime we connect
a LED as the output of any circuit (for example a button being pressed and a light bulb going on) we also
put a resistor between the bulb and anything else in order to prevent it from bursting because it had too
much current going through it. Here we can see different types of resistors, which have different
resistances, measured in Ohms.

ELECTRONICS: THE CAPACITOR

The capacitor is another example of an ingenious use of physics and its laws to provide a circuit with a
capability that wouldn’t normally be thought of. The transistor is an electronic component which allows
for charge to be stored within it. This is done by providing the capacitor with two metal plates separated
by a dielectric material. The two plates accumulate the charge when connected to a power source.

To discover how much charge a capacitor can store we have to look at its Capacitance (measured in
Farads, F) - the capacitance is always looked at in terms of 1 Volt.

The capacitor can store a charge for a small period of time and deliver it whenever the user wants and
therefore it can be very useful, an example of this is to use a large capacitor as a last case scenario
emergency battery in a cold environment, where a normal battery wouldn’t operate efficiently (due to
cold weather and the chemicals involved in batteries). Furthermore another use could be using the
capacitor to store the charge up to a point to then release its charge, informing the user that his main
batteries will not work anymore due to cold weather.

Imagine if you were trying to make a light blink, by charging and discharging one or even more than one
capacitor you could have a potentially very efficient light blinking automated circuit, whereby a

34

capacitors charges up and then delivers it charge to a switch which is connected to a ‘turn the light on’
button. After that the capacitors charges again and this time delivers its charge to ‘tun the light off’
button.

A more enhanced version of this initial concept will be used later when designing the memory for the
computer.

ELECTRONICS: BINARY AND BOOLEAN

Binary and Boolean are the means of communication between computational systems and basic
electronic equipment, they are always two possible options to communicate, either on or off, which from
now on will be referred to as 1 or 0.

Computers are able to give results and hold memory and even make decisions based on how the 1’s and
0’s interact with each other, this will be covered shortly. However for the time being it would be important
to know how to read binary or at least how to understand what it is.

The easiest way to read binary is to think of it as a span of x numbers that are being powered from the
number 2. For example the number 01011010, if beneath it we put the base 10 number span to power of
the 2...

0 1 0 1 1 0 1 0

27 26 25 24 23 22 21 20

… And then we only add the ‘active’ bits (that is the ones that contain 1’s) then we get...

21 + 23+ 24 + 26= 90

Therefore as we can see the binary number 01011010 equals to a 90 in base ten system. Please keep in
mind that more binary will be covered as this project goes along, such as decimal points in binary.

However it is easy to see how being able to convert an ‘on’ or ‘off’ into a variety of different outputs opens
a completely new door to how computers operate. The concept of binary, though it doesn’t make much

35

sense now, will come together in the following chapters where logic gates and memory will be covered in
more depth.

ELECTRONICS: LOGIC GATES

Logic gates are the most useful electronic component as they can provide logic to a circuit, this is done
using a series of interconnected transistors which then provide an output based on the given input.

Logic gates use something called Boolean logic which allows it to give different output based on the
different inputs. There are several types of logic gate; AND, OR, NAND, NOR, XOR, XNOR and NOT
Different gates are used based on what you want your output to be based on the input you have.

The gates are constructed by combining different layouts of
transistors and based on the arrangement we can get a different
output. For example to build a dual input AND gate (input A and
input B) we need two transistors in series and our desired output (

labeled Out) at the end of this series. LEDs tend to be the output
for any circuit during its two most critical stages, development
and troubleshooting, and therefore we could picture the two
transistors in series along with a battery, an LED and a grounding
for the circuit.

To see what would happen with the output depending on how the gates are made it is considered good
practice to sketch a truth table. A truth table is simply a list of all the possible inputs and consequently its
output. We can now see a couple of examples of Truth tables. In the Truth tables we write the inputs as
letters of the alphabet and the result is generally labeled as ‘X’ - this simplifies having to write down
something along the lines of ‘Transistor A’, ‘Transistor B’ and ‘Result of both’

Here we have a double input AND gate Truth table.

A B X

A has to be on AND B has to be on For X to be on

0 0 0

0 1 0

1 1 0

1 1 1

LED

Battery

36

And here we can see a triple input OR gate

A B C X

A has to be on OR B has to be on OR C has to be on OR all the above For X to be on

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Here we can see the truth table and symbol for the gates that we have available.

37

GENERAL KNOWLEDGE: BACKGROUND

Jon Von Neumann was a computer scientist that is widely known for creating the ‘Von Neumann
Architecture’. In 1945 he wrote a paper talking about a theoretical electronical device that featured a
processing unit that contained an arithmetic unit, registers and a control unit orchestrating the exchange
of data between the processor and the memory through buses.

Buses can be thought of as channels which carry data between different parts of the processor or
between the processor or memory. When we say between different parts of the processor we are talking
about different registers.

The main difference that Von Neumann brought was the fact that one of the registers; called the Program
Counter (PC), which is in charge of storing and going thorough the instructions one by one, not only
stored instructions but actual data as well. If we imagine a bunch of lines of code, this lines of code and
the data they would of interacted with would have been stored in different locations in any other
architecture (such as the established Harvard Architecture) however in the Von Neumann Architecture
this is not the case.

Von Neumann stored the instructions and the data they interacted within the same location. That made
the construction of the computer much more easy to understand and therefore made computing more
reachable to the outside world. Now we can see an example of Von Neumann’s Architecture.

type memory line of code what it does

Instruction 1 load mem_loc 5 instruction to load memory location 5

instruction 2 add mem_loc 6 instruction to add memory location 6 to 5

instruction 3 save in mem_loc 7 save result of operation in location 7

instruction 4 output mem_loc 8 display the result in location 8

data 5 50 this is the value of mem_loc 5

data 6 12 this is the value being added in line 2

data 7 62 this is the result of adding loc 5 and 6

data 8 Dell XPS Screen this is where the data should be displayed

As you can see it is easier to follow now what Von Neumann meant – in easy terms, the Von Neumann
architecture revolutionized computing simply because he decided to join the two most important
interactive concepts; instructions and data – this simplified computing as it meant that only one bus of
each type was needed (as everything was stored in the same place).

38

However it is all not good news – the Von Neumann architecture had a flaw. We have above mentioned
the term bus and described it as a data / instruction carrying channel. Like every channel however there
is only one direction of flow and therefore only one thing can travel along the buses at a given period. This
can cause a Von Neumann Bottleneck, which again in simplified terms is simply when either data can
travel from the memory to the processor (or vice versa) or when instructions can travel along the
processor or towards the memory and not both at the same time. If you wanted to send the number 5
from the memory to the Arithmetic Unit (just as we did with the number 20 in our above example) you
would have for the bus to be free from carrying anything that could have been sent before such as the
message which informed the memory that the number 5 was needed.

Although the above concept seems difficult to understand it will all make sense once we explain how the
problem is solved. Lets once again recap and take a look at the problem; the problem is that since there
is only one bus of each (of each, because there are 3 different buses; explained later) we can only move
data in the bus one way and with one purpose; which can slow down the system if there are other things
waiting to be sent down the same bus.

The solution therefore is to have some sort of method to control, or better, optimize the way the buses
are used by the system. This can be easily visualized with two scenarios;

Scenario 1

There is a classroom with students; they are asked to all say shout a number whilst someone writes the
numbers being shouted in order. The students start shouting with no control and the person in charge or
writing is overwhelmed and can only write a couple of numbers.

Scenario 2

The same is asked to the students, but this time its asked by a teacher; which tells them that he will ask
in order and then tell the person in the board which number the student said, the person in the board will
then listen to the teacher and write the numbers that the teacher says.

As you can imagine it is much better for the person writing the data in the board to have some sort of
control when it comes to receiving feedback from the different members of the class. This links nicely to
our problem with sending information through the buses, obviously the whiteboard writer (bus) can only
‘listen’ to one student (CPU components and registers) in order to write the data in the board (move
information from the students mouth to the whiteboard, or from register x to a certain location in the
memory), therefore and in accordance to the ease of communication experienced in Scenario 2 the
computer counts with a Control Unit.

The Control Unit simply put reduces the number of Von Neumann bottlenecks by a massive amount
(please note there are still Von Neumann bottlenecks).

Therefore lets take a look at our problem; data to the bus appears from everywhere – and our solution;
the control unit makes sure that the data received is manageable for the buses. It is especially useful in a
concept that will be introduced shortly which is an example of how the control bus is of extreme
usefulness.

39

The following concept is not a component but rather a guideline for the components to work by. It is
called the Fetch-Decode-Execute Cycle and it manages the main 3 different types of interaction the
different components of the CPU and the memory have to handle. But before we start learning about the
FDE lets have a recap of this topic.

Whilst other architectures, like the Harvard architecture, separated data and instructions into different
parts of the processor, the Von Neumann Architecture joined them, and treated them the same in the
eyes of memory location. The result of this meant that a single program counter, a single Control Unit and
single buses could exist within the computer, this lead to more efficient yet simpler computer designs
which made it easier for people to understand computers.

GENERAL KNOWLEDGE: PARTS DISSECTION

The Von Neumann Architecture counts with three main parts :–

The CPU which in more depth counts with; the Control Unit (in charge of orchestrating the exchange of
data through buses), the registers (which will be covered later on, but for now are used to store very
specific data which helps the FDE and Control Unit operate) and the Arithmetic Unit (which is in charge of
doing any maths (such as 20 + 30 = 50) or, also covered later, any logic operations).

Outside the CPU and moving to the second main part we have the memory– which is the place where all
the instructions and data are stored. This doesn’t change if the computer is turned off – they will still be
there when the computer is turned back on. Throughout the pages we will see about the different types of
memory there are; non-volatile or volatile, RAM, hard drive (and their different types) or cache, read or
read and write.

The third main concept is the buses – the buses, when instructed to do so by the Control Unit, send
information required for a line of code to be processed and therefore allow the program counter (one of
the many computer registers) to move to the next line (from 'load 20’ to ‘add 30’ to the loaded value of
20')

GENERAL KNWOLEDGE: FDE, BUSES AND REGISTERS I

After this recap we can now start talking about the last concept that needs grasping, the FDE – each of
the letters in that acronym accounts for a very specific task that the computer does. This three tasks are
done with one objective in mind; jump to the next program counter instruction so that the computer can
do it all over again – thus called FDE cycle – this cycle is done over and over again by a computer until

40

the program receives a halt option, when a program counter receives a halt instruction the Control unit
mandates all the components to do no more work.

Although there is a wide number of instructions that the PC can receive (add, load, halt, store; are some
we have seen so far) they can all be reduced to three parts, thus the FDE cycle.

The first instruction is 'Fetch' - in this part of the cycle all the data that could be required for the process
to take place is ‘recollected’ from memory and taken to the appropriate registers (very purpose specific
data storage entities in the CPU) – lets take as an example line 1 of the example; 'load mem_loc 5' - in
this example and when run through the Fetch part of the cycle the Control Unit ensures the buses are
carrying the appropriate information to the parts of the computer. We mentioned that there were 3 buses
–and now it is time to go more specific – the three buses are the address bus, the control bus and the
data bus – each have very specific jobs.

The Address bus is in charge of carrying the memory location of the data (mem_loc 5)

The Control Bus is in charge of sending the ‘orders; that the Control Unit sends and

The Data Bus is in charge of simply transferring information, for example the information that was read
when the Control Unit informed the Control Bus to send the Address Bus to mem_loc 5 – therefore
broadly speaking we could say that the Data Bus simply carries '20'

After the buses have been appropriately used and the registers have been loaded with the information
provided by the teamwork of the buses the second part of the cycle starts

The second instruction is to ‘Decode’ – in this part all the data is collected and therefore the computer
must ‘understand’ what can be done with that data – a transition between the programmers
representation of the data to the microprocessor’s representation if you will.

The Opcode (the code in binary used to program the the function of the processor) is loaded from
memory and then sent to the Control Unit. The Decode function itself is done by the Control Unit, as this
component will later on ‘tell’ the other components what their duties are.

Lastly, there is the ‘Execute’ instruction, please note, when this instruction is finished the whole process
starts again. However before we start on the last part of the FDE it is important to have another mid-text
update on the functions of the processor, in this case the Registers

GENERAL KNOWLEDGE: REGISTERS

From the above Execute paragraph you might be wondering how does the computer know where to go
next, because if it didn’t the FDE cycle would always repeat it self over and over again. This is where the
registers start to come in to place, as we said before the registers hold very specific data for the
processor to use. Along with that they also store data that has a use for only one cycle so every cycle that
passes the registers are updated to hold important data for that single process.

41

Here we can start seeing the ‘advanced simplicity’ of computers, the importance given to a series of 3
steps and how its only three steps that are being repeated an average of 10 digits a second to create
what was previously thought of as something of inmense complexity. To answer our question on how do
computers know which line of code to do next we can introduce the first register that we will talk about.
The ‘Program Counter’ or ‘PC’ for friends. The Program Counter is in charge of keeping the computer (mix
of CPU, buses and memory) updated with the current instruction it is operating, so if we were to return to
our above example of instructions and absorb a PC into that model it would look something like this.

type memory line of code PC value

Instruction 1 load mem_loc 5 1

instruction 2 add mem_loc 6 2

The PC references the memory location of the current instruction and therefore if we had other data in the
memory and we had to store our program somewhere which wasn’t the first positions of the memory the
PC would display the appropriate memory locations.

type memory line of code PC value

Instruction 3 load mem_loc 5 3

instruction 17 add mem_loc 6 17

It is possible to have a single program split up within the memory although this is almost always managed
by an operating system so we won’t talk about that.

Let’s imagine that our computer has just done the first instruction and therefore fetching, decoding and
executing has been done, when the computer jumps the next instruction and starts a new FDE cycle with
the second instruction the PC value is updated from 3 to 17. You might wonder how the PC gets updated;
it is fairly simple - the new PC value is sent by the Data Bus to the PC from the memory, so that everytime
any part of the computer wants to check the PC it doesn’t have to occupy the Data Bus (as its only one
way) it can simply check within the CPU’s register part and look for the PC.

Now that we know what the PC does it is time we look to another register. In this case we will look at the
‘Memory Address Register’, MAR.

The MAR is the register that stores one of two possible items, depending on the current part of the FDE
and the Control Unit requirements. It can either hold the memory address from data that will be fetched
to the CPU or the memory location to which data will be sent and stored. The MAR could therefore for
example hold the value 5 in the following example:

type memory line of code explanation

Instruction 1 load mem_loc 5 holds memory address from data that will be fetched

42

Or perhaps the number 7 in the following example:

type memory line of code explanation

instruction 3 save in mem_loc 7 holds mem_loc to which data will be sent and stored

Of course the other side of the coin of the address of the data is the value of the data itself. The content
holding responsibilities of that part fall into the third register which we will talk about, which can be
thought of as MAR’s distant cousin. It is called the Memory Data Register, MDR. This register holds the
values of the memory location that will be fetched to the CPU or that would be sent to a certain memory
location to be stored. Thinking as the MAR and MDR as two similar registers could look something like the
following example:

line of code MAR value MDR value

load mem_loc 5 5 50

save in mem_loc 7 7 62

It is time for a small review of what we have been talking about in order to get everything in context.

The CPU is, apart from two other things that will be discussed later, formed by registers. Registers are
specific memory devices that reset them self and get new values loaded after each iteration of the FDE
cycle is complete. So far we have seen 3 out of 5 registers, we have seen the Program Counter (PC) -
which holds the memory location of the current instruction and furthermore we have looked and
‘mentally’ combined the Memory Data Register (MDR) and the Memory Address Register (MAR), MAR
holds the address of data that the processor or memory are or will be interacting with, and MDR holds the
actual values of data that the processor or memory are or will be interacting with.

Now that we know what these 3 registers do its time to look at the last two registers - the Current
Instruction Register, CIR is one of them. It is the register which is in charge of holding the instruction that
has been fetched from memory. It is in fact the CIR that interacts with the Control Unit to decode an
instruction.

As the last part of this section we also have the Accumulator or ACC. To talk about the ACC we have to
introduce another component to the CPU, the last component that we haven’t talked about and one that
will surely make sense. To put things into context lets look at this line below:-

type memory line of code

Instruction 3 load mem_loc 5

instruction 17 add mem_loc 6

How does the CPU add mem_loc 5 to mem_loc 6, or where does it even load mem_loc 5 to so that
mem_loc 6 can later on be added? This is where the Arithmetic and Logic Unit, ALU for the close friends
comes in play - the ALU is in charge of doing calculations (add, subtract...) and also handle logic such as
if statements.

43

An if statement, also called conditional statement is the way to add logic to programs. Let’s have a very
bare-bone abstract example:

age = 23

If, the age of someone is above 18...

they can drive

else, the age of someone is not above 18 (below 18)...

they can’t drive

As its possible to see there is a certain level of logic that a computer can read, the ALU is in charge of that.

The same way we mentally joined the registers MDR and MAR, it wouldn’t be a bad idea to mentally join
the ACC and the ALU. The ALU is in charge of doing the calculations and logic and the ACC is in charge of
two things, the first one is feeding values to the ALU, for example in the ‘load mem_loc 5’ instruction the
ACC holds the value of mem_loc 5 and the ALU fetches it from there to then ‘add mem_loc 6’. The other
function the ACC has is to to simply store the results of calculations made by the ALU, so for example
when the addition of 50 and 12 was completed, and for the duration of time between the computer
coming up with the result and the user telling the computer to store it in mem_loc 7, the result was stored
and in the ACC

And that is it; those are the registers and components that make up a processor. Now that we have a little
bit more knowledge we can look at the last step of the FDE. But before am abstract diagram of the parts
that make up the computer so far could come in handy for getting all the ideas in concepts linked.

CPU

ALU CU

REGISTERS

Control Bus

Address Bus

Data Bus

MEMORY
mem_loc...

1 2 3 4 51 2 3 4

106 7 8 9

1511 12 13 14

2016 17 18 19

PC
MAR

MDRACC

CIR

44

GENERAL KNOWLEDGE: FDE AND BUSES II

The last part of the FDE we have to look at is the execute part. The execute part of the FDE cycle is the
part where, in terms of what users expect, we see an output. The output is either a visual output, i.e. The
computer displays an output in the screen after the computer calculated the result of 5 + 4. Or what we
could call iterative; that is an output given however it is used for the next iteration and the actual output
(the visual output) will be given later on, i.e. A computer calculates the Fibonacci sequence for 10
iterations and the computer has just given an output of 3 (the 4th iteration).

When the Execute part of the FDE happens the Program Counter shifts up one value, so that the next FDE
cycle that starts can Fetch, Decode and Execute the next instruction. Depending on the instruction
different parts of the CPU, buses and memory. For example, perhaps the instruction is to

save result of 5 + 4 in mem_loc 10

In that case for example the MDR and the MAR would be used to store memory location and
corresponding data in the memory, rather than holding the data and memory address for the CPU to load
from memory. Of course it goes without saying that in the following example the jobs are switched.

load mem_loc 13 to ACC # this is loaded so that later on it can be added with something else perhaps

SAP-1 CONSTRUCTION: CLOCK

The Clock in a computer is a critically important component, it offers the computer a rate at which to work
with. Imagine the following scenarios:

Scenario 1

In the same classroom as a couple of pages ago we encounter the students, leaderless, shouting numbers
at the board. Not only the information is too rapid to understand for the person writing, but that
information which might have a chance of being heard is spoken over by another number from another
part of the room and then the whiteboard writer can’t seem to understand anything.

Scenario 2

Now that the classroom has someone orchestrating the number output (a Control Unit) we might want to
even make the whiteboard writing more efficient and, along with putting people in an order so that
instructions can be heard, also tell them when the speak. This is very convenient because if the person
writing is having a hard time writing on the board the rate can be slowed, and if they can handle more
information then the rate can be sped up.

45

This is the case with our Clock component, we will be able to decide the rate at which we want actions to
take place. An example of this could be to speed up the FDE cycle or even to troubleshoot something as
we will be able to take the next step that the processor would normally take at our own pace and
therefore be able to get a ‘step by step’ idea on how the processor does it, and see which part(s)in our
code or hardware could be wrong.

To build a clock we need to get an idea of what it is that we want to accomplish. We want to be able to
change the rate at which the processes happen. Therefore a concept of how this could be accomplished
could resemble the following:

The X signifies any action that we want to link to the output, it could be an LED light, a buzzer in a fire
alarm or, in our case, a step on the FDE.

To build a Clock first we have to come up with an abstract design of what we think could work. In
electronics a series of components can construct something called an SR Latch, this Latch simply Sets
and Resets a circuit based on the input given by using the other gate’s output as one of the inputs. We will
use NOR gates and the circuit then can have a manually ON / OFF state.

Here we can see that what is going on. Whilst the reset button is active we can set the output on or off,
however once the reset button is disabled we can no longer change the output. This initial model is not
only useful for having something set the light switch on or off but also for later on reference, when talking
about keeping a state high or low (memory).

How could this circuit be more useful? It could be more useful if we only had one button to change the
state and we renamed the reset to enable, when the enable is active it will be able to gather input from
the state button and output it into the output, each press being an on or off. This could be seen as an
extension of the SR Latch

Desired Rate Clock X happens every
<rate>

INPUT PROCESSING OUTPUT

46

The above IC (integrated circuit is a D Flip Flop) and as it can be seen from the example (which makes
more sense ‘clock logic’ wise) there is an enable switch, which can halt or start/resume a process and
then there is a state switch, which acts as a ON/OFF switch for the output. This model although efficient
presents a problem; the timing (ON/OFF switching) has to be done manually. The only way to fix this is to
think of way to make the State switch change by itself after a certain time.

We are in luck however, as there is a component which will allow us to do that exactly. The capacitor
allows for this to happen, along with another component called a comparator. This is an abstract of how
they will work together. I will describe the step, followed by the solution and then the next step.

Firstly, imagine a capacitor charging up to a certain charge; when the charge is reached a light bulb goes
on. This raises the first question, how do we know when a charge is gained? This is where the comparator
comes in handy. A comparator allows for two charges to be compared - when charge A < B the output is
0, however when charge A > B the output is 1.

Now, imagine that there are two comparators and two capacitors. One holds the opposing effect of the
other one; that is, one lights the bulb when the charge is above x and the other one turns off the switch
when the charge is below y. That raises the second question, how would they interact? If we go back to
the SR Latch example we can start to see how this would work. If we have one setting the output on and
the other one resetting the output then we will be able to get a stable ON/OFF feed

The last question that raises is how can we get a stable ON/OFF? That is when we can take advantage of
the capacitors; if we can charge one capacitor, release its output over x time only to ‘switch around’ and
charge the other capacitor, to release exactly the other output we can get a stable ON/OFF feed. This is
called a Clock and we can see it in action here.

47

We can see from the above example that we have changed the State switch for a Clock; which is simply
an automated implementation of an SR Latch using capacitors and comparators for the charging. A good
knowledge link at this point could be to realize that if we change the overall resistance of the circuit the
capacitors would change at a different rate. Giving the clock the possibility to go faster or slower.

We can now get an idea of how our computer will go through the steps in the FDE cycle, if we replace the
LED output with the actual computer and its component every action in the computer will be guided
based upon the Clock rate.

For troubleshooting moments specially a manual pulse option has been also added, with this addition you
will be able to get the computer to run at a Clock rate or to a manual pulse. We will do this the following
way; adding a selector between one option or another one.

And that’s it. Our clock is finished. Now we can combine it with the other components and configure at
how many Hertz our clock runs, being able to also manually step through the clock.

SAP-1 CONSTRUCTION: BUS AND REGISTERS

As we have previously seen there are certain types of registers that hold specific values, for example the
MAR or MDR. In the case of the SAP-1, and with the aim of simplicity as one of the top objectives we will
have a slight different approach to registers. We will link registers like MAR and MDR into one single
register and call it a Common Register - the MAR and MDR wont be linked literally; but rather the Common
Register (CR) will be able to be used as both depending on the necessity. This will be shown later on.

As we know the buses carry information from component to component and depending on the data
carried on that clock cycle a register might want to ‘receive’ the data and another might want to let the
data untouched as its not needed.

The layout we are going to use will need a certain features:
We need a bus that will connect all the registers with each other
We need the ability for buses to deliver and save data

48

To start off we will do the following abstract design:

What we see in this diagram is a very simple abstract model of the bus-register interaction that we need.
Every CR has access to any other CR through the bus, now imagine connecting this to our already built
clock and we have the bus ‘checking’ if any register has something to ‘say’ every clock rate. This
amplifies the previously aforementioned point whereby we slowly realized that the computer just does
really ‘simple’ operations at a really high speed (for example a 2.5 GHz processor does 2.5 billion of this
clock cycles per second)

The bus we will be building will be 8-bit; this means that the bus will simply be a recollection of 8 cables
that split into every register sequentially. The registers will therefore also be 8-bit.

Even though we don’t have an actual logic diagram we can see how to transfer an 8-bit value (8 cables
holding a single bit each) from CR A to CR B. The ‘transfer cables’ leave the bus structure to go through
CR A, once they get to CR A they cables state gets set to whatever CR A is (01011010 for example). Then
the transfer cables rejoin the bus and travel down to CR B.

Just by reading the above you should think of a couple of problems. For starters, if the above is true then
the bus gets reset everytime it goes through a register, which makes CR A to CR C transfers almost
impossible (unless you rely on CR B to temporarily hold the value). The second problem you could think of
is how does a register store a value from the bus?

CR A

CR B

CR C

BUS

CR D

CR A

CR C

BUS

CR D

49

All of this above problems can be solved by adding a tri-state buffer and an Enable and Load setting on
our registers. The Enable setting makes whatever is in that register reset the value of the bus to that
value. The Load setting loads any value from the bus into the register. This way we can do pretty much
anything we want - we can transfer data from CR A to CR C; we can save a value from CR D to CR B
etc..etc..

The way we will do this is with the tri-state buffer; the tri-state buffer will allow for the output signal to
either make it or not make it to the bus. A wire has the two states 0 or 1, but it can also have a high
impedance, Z state. When the Control is 1 in the tri-state buffer the signal output is either 1 or 0; when
the Control is 0 the output signal is Z. Below we can see an example and a Truth table for the tri-state
buffer.

By having a tri-state buffer on both the Enable and the Disable we can make sure that the registers only
gather or send data when we, or the logic we will develop later on, desires. An abstract example can be
seen here

Input Control Output

0 0 Z

0 1 0

1 0 Z

1 1 1

Enable
Load

BUS

Enable
Load

Enable
Load

CR C Enable
Load

CR D

CR BCR A

50

As we can see now we can have the possibility to make sure something gets loaded or sent through the
buses, for example from CR A to CR C the logic behind it would be something along this lines:

Time Passes CR A LOAD = Z ; CR A ENABLE = 1 ; CR DATA = 01011010
thanks to CR B LOAD = Z; CR B ENABLE = Z; CR DATA = N/A
our Clock CR C LOAD = 1: CR C ENABLE = Z; CR DATA = 01011010

This only leaves one final question; how can we save the data once its loaded into a register? If we go
back to when we were learning about the clock we might remember the D Flip Flop or the SR Latch. By
using similar circuits we can store an 8-bit value (until that registers enables the Load again; in which
case a new value will be stored)

The above diagram introduces IC to our design process, an IC (Integrated Circuit) is simply an already
made circuit condensed into a smaller footprint. The input labeled Bit 1 is the first of 8 bites needed -
therefore we will 8 of the above circuits, except for the Clock (the rectangle with the AC current symbol)
and the Load input which there should be only one of to insure the whole system follows the same main
instruction (Enable ON/OFF) and the same timing (Clock speed).

To build the SAP-1 we will need 2 8-bit common registers and what we will call an instruction register,
which greatly resembles the CIR that we discussed previously in the Von Neumann model. Before
discussing in more detail the function of the registers please note that in the actual construction of the
SAP-1 we will not create 8 of the above circuits. This is because now we know what is inside a single bit
register and therefore we know how to create an 8-bit register and therefore we can slightly reduce our
workload and need for components by simply using two 4-bit register ICs (sort of what we could do with
the clock, instead of building our clock we could just have a clock IC and everything would still work) -
they come built and have everything we need for our register-bus communications interface.

Going back to the instruction register; it is simply a copy of the other registers but simply the 4 most
significant are not going to go to the bus for data transfer. The 4 most significant values of the instruction
register will be linked towards the computer’s instruction decoder which will be discussed later on.

51

0 1 0 1 1 0 1 0

27 26 25 24 23 22 21 20

The diagram above is simply a representation of the 4 most significant bits (shown in a highlighted color)

SAP-1 CONSTRUCTION: ALU

The ALU as we said before is the part of the processor which is in charge of performing the arithmetic
needed for a program to run. When we learned about reading numbers in binary in the ‘Electronics’
section we said that we would come back to binary for more complicated tasks later on.

The time has arrived to learn about two major things in binary, which our ALU needs to be able to do;
adding and subtracting. The way we add numbers has certain logic behind it but it follows our way of
doing it. However the way we subtract numbers in binary differs from our typical method. In binary we
subtract by converting the second operand of the equation into a negative number and then adding the
values together. Lets have an example to understand it better;

Typical method, number A - number B = number C
whereas in binary, number A + negative(number B) = number C

Therefore, and with that in mind, the only thing we need to learn to do is add in binary and convert a
positive value to a negative value in binary. To start with we will learn about adding in binary. For all of our
examples we will play with 4 bit values that can’t carry if the sum overflows (this will be understood later
on).

To sum we have to simply follow a set of rules. This set of rules basically tell you whether the result is a 0
or a 1 and whether you have to carry anything into the next bit. Here is the rule table.

Calculation Result Carry
0 + 0 0 0
0 + 1 1 0
1 + 0 1 0
1 + 1 0 1
1 + 1 + 1 1 1

You might be wondering why the last entity on this list has three digits in the calculation column and not
two, this question will be answered once we do a sum as an example using this table

The sum we will be doing is...

52

0110 Here we are adding 6 + 7. We start from the right and follow the table and the
0111 + instructions that it gave us. In the first calculation we result 1 and carry 0

0110 After writing one as a result and carrying none to the next calculation we move
0111 + on to the next, now 1 + 1 gives us a result of 0 and a carry of 1

1

1

0110 So far this has been straight forward, and if we follow the rules table it
0111 + should stay this way, we know have a carried on 1 which moved on to the next
01 calculation. Doing 1 + 1 + 1 gives us a result of 1 and a carry of 1

1 1

0110 Now we have the last calculation to do, we treat the carry 1 as if it was another
0111 + 1 on the next sum and get 1 + 0 which results in a result of 1 and a carry of 0
101

1 1

0110 And that’s it, the sum of 0110 + 0111 gives us 1101, which in denary is 6 + 7
0111 + giving us 13
1101

Now that we know how to add in binary we need to be able to convert from positive values into denary. To
learn this we will look at two models of doing this, the first one, One’s complement, will not be used but
we need to learn about it to be able to learn about the one which we will use, Two’s complement.

One’s complement relies on a very simple method. It has the most significant bit used to determine when
something is positive and when something is negative, this means that it only leaves 3 bits usable out of
a 4 bit value, but it also means that we can represent negative and positive values simply by switching a
bit, something incredibly simple to implement in our ALU. Below is an example of a positive number and
a negative number under One’s complement. Please note, a low most significant bit denotes positive,
where as a high most significant bites denotes that the value is negative

One’s complement table 4 bit
1000 -7 0001 1
1001 -6 0010 2
1010 -5 0011 3
1011 -4 0100 4
1100 -3 0101 5
1101 -2 0110 6
1110 -1 0111 7
1111 -0
0000 0

Straight away we can see that a problem appears, we have a positive zero and a negative zero, this then

53

when adding the number together (and therefore performing subtractions) creates major problems that
make this method completely unreliable. The only one good thing we can take from this method is how
we can easily convert numbers from positive to negative by flipping only one bit, the most significant bit.

Therefore and to fix the double zero problem we are going to use another method, this method is called
Two’s complement and is simply an improvement over One’s complement; by subtracting a one to every
negative number we eliminate the double zero problem. Two’s complement now gives us the appropriate
answer when we perform subtraction and additions and is therefore the method we will use in our ALU. To
convert a number from Two’s complement to One’s complement we simply add a one. Below we have a
table to show how Two’s complement interacts with numbers.

Another good thing about Two’s complement is that it allows us to put a header to every column of binary
digits, unlike with One’s complement - this adds a lot of sense to what we are doing. Below is the table.

Two’s complement 4 bit
-8 4 2 1 Denary value
1 0 0 0 - 7
1 0 0 1 - 6
1 0 1 0 - 5
1 0 1 1 - 4
1 1 0 0 - 3
1 1 0 1 - 2
1 1 1 0 - 1
1 1 1 1 - 0
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7

Now if we wanted to do the subtraction 3 - 2, we would simply take 3 (0011) and 2 (0010), then convert
the 2 into a -2 (1101), after that we would do 3 + -2 and we would get the result. This is how we will
perform arithmetic operations in our ALU

Now that we know how to add numbers we need to know how to do a machine to add them. So right now
what we need to do is a 4 bit adder. A 4 bit adder is a component which comes in the form of an IC
(integrated circuit) but that can also be built from logic gates. We will build a 4 bit adder out of logic gates
but on the final SAP-1 build we will use the 2 of the IC adders to have 8 bits. We will also look at how to
make the adder interact with the other parts of the computer.

All the components for the adder have already been explained so this should be pretty easy to

54

understand. First we are going to look at a 1 bit adder.

This right here is a one bit adder. It uses, just like our rules table for addition, a carry value as an output,
this carry value jumps to the next calculation thus turning it self from a 0001 to a 0010, which is two in
binary, and which is why sometimes we need to have only a carry value and not a result value - because
the carry value is 2 and the sum value is 1. And having them together would make a 3.

The adder is fairly simple, having two XOR gates, two AND gates and one OR gate. Each adder that we
add handles one bit higher, therefore this adder only handles the 0001s, and if we were to add another
adder that adder would handle the 0010s, and the next one would handle the 0100s and so on. The carry
OUT output will be linked to the next adder that we add as a way to carry any value. A diagram below,
with the help of this 4 bit adder should help you understand this paragraph.

55

In this example, we have a 4 bit
adder, this are 4 one bit adders
combined, the way they can
‘communicate’ or carry each
others results is by having the
carry OUT connected to the
carry IN of the next adder
instead of connected to a bulb.

When one adder has a carry as
an output we say it is overflown,
this means that it has more
information than it can handle
(they are called one bit adders
because they can handle one bit,
and if you remember, a carry is
always a 2 and not a 1) .

A way of preventing overflows to
our adder system is to connect a
new adder to the carry OUT of
the previous adder, then that
second adder will handle the
overflown value.

Of course we will still get
overflows with a 4bit adder, but
at least we’ll be able to do more
than 1+1 without it breaking

Now that we know how to add and subtract and how to build an adder we need to be able to put it on the
computer it self and make sure it interacts with our other components. The components the ALU needs to
interact with are mostly the two registers that we have and the bus.

So far we know that we have two Common Registers, we will call them the A register and the B register.
They are connected by a bus and that’s how they communicate. Here is a visual representation of that.

B Register

BUS

A Register

56

Now we simply add the ALU to this design.

Now that we have the way to communicate we need what inputs and outputs the ALU will have. As an
output the ALU will have EO (the E stands for Epsilon, which means sum), and as an input we will have a
Subtract signal, or SU, which when high will tell the ALU to subtract and when high will tell the ALU to add.

The only thing we need to do know is understand how to connect the ALU to the registers on a less
abstract level, the following diagram shows this, each 4bit adder is presented as an IC in the form of a
box.

A Register

ALU

BUS

ALU EO
SU

A REGISTER

B REGISTER

INPUT A

carry IN
4bit adder
carry OUT
INPUT B

OUTPUT

INPUT A

carry IN
4bit adder
carry OUT
INPUT B

OUTPUT

A

B

OUTPUT

B Register

57

This is how the adder and registers would communicate, if we wanted to then send the result and load
them into the bus then we would have to use the same component we used with the A and B registers, a
tri-state buffer.

Here we can see the tri-state buffer as
the last barrier between having the bus
loaded with the output from the ALU.

Now the only thing we need to learn is how to subtract and this is surprisingly simple. To subtract we are
going to use a logic gate which acts as an inverter when under certain conditions, we can call it a
conditional inverter. The XOR is this conditional converter, if we look at the truth table for an XOR gate we
will see how under the condition of A being high, then the output is the opposite of B. This is very useful
because we now that to subtract we only need to convert a number to negative and add 1 to convert it to
its One’s complement equivalent. Therefore we can link the B input of the XOR to the SUB signal and
therefore be able to add or subtract. Then to convert the number from Two’s complement to One’s
complement we add one by adding one to the Carry IN if the SUB signal is one (meaning that we want to
subtract)

58

The diagram below will show you how to do the subtraction

And that is it, that is how we add and subtract numbers in binary, how we lay the ALU within the processor,
and how we link it with the bus and registers. This ALU can now perform operations of a value up to 255
before overflowing.

SAP-1 CONSTRUCTION: RAM

This chapter will not be so much about building but mostly theoretical and abstract content, this is
because we have already covered how to build memory. We will look at the two types of RAM and how to
build them, then we will look at why one type is better for us than the other one, after that we will look at
the method used to address one bit of information without interacting with the other ones and finally we
will see how IC technology can be very helpful.

RAM, Random Access Memory, can be simply seen as the memory that we will use in order to store
information, like perhaps the result of a calculation. We save results in RAM and not leave them in the bus
or registers so that the computer can perform another action. Nowadays, computers come with an
average of 6GB of RAM

The first type of RAM we are going to look at is SRAM or Static RAM. This design is based around the use of
an SR Latch, just as we had used in the example of the Clock. The circuit will store a value (0 or 1) and
then keep it there until the reset signal is sent.

59

That right there is a way to store one bit of information, but it can be fairly inefficient to make because of
all the parts it needs. Counting on the fact that we want our RAM to store 16 bytes of memory, that is 128
of those circuits, which is a total of 512 logic gates. Furthermore, for a modern computer that might have
8GB of RAM, if we were to follow this design then that machine would need about 50 billion logic gates,
that is 50,000,000,000!

As we can see that is fairly inefficient, and therefore there was a new design made which was by far more
efficient. This new design was called the DRAM or Dynamic RAM. This kind of RAM uses a slightly different
approach, but very efficient. The only thing DRAM needs to work is a transistor and a capacitor. The
charge on the capacitor stores the byte of information. Just like that we have minimized what we need in
terms of components for 16 bytes from 512 logic gates, or about 1000 transistors, to 16 transistors. Here
we can see an abstract method of how DRAM works.

And that is how DRAM works, of course DRAM has a problem; this is because capacitors can only hold a
charge for the small time. To fix this the circuit has to be built with another part which acts as an updater.
Sort of like this;

Because this is can be more difficult we will use SRAM for the SAP-1 and to explain the next section.

Byte of information that could be stored there

Capacitor will temporarily store the byte of information received

repeat every couple of secs

Capacitor
Refresher
circuit

Write to memory signal

60

Now we need to look at how to address a certain part of the memory, because we want to load every
memory unit of the SRAM with different information. The way we do this is by using 4 inputs, depending
on whether they are high or low they will activate one or another AND gate, and depending on which AND
gate opens the signal will go to one or another memory circuit.

We can imagine our 128 bit memory to look something like this.

BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 BIT 8

EN 1

EN 2

EN 3

EN 4

EN 5

EN 6

EN 7

EN 8

EN 9

EN 10

EN 11

EN 12

EN 13

EN 14

EN 15

EN 16

And perhaps sometimes we might want to communicate something to only one EN channel, therefore to
fix this we do the AND gate circuit that we discussed previously.

DRAM DRAM DRAM DRAM DRAM DRAM

DRAM

DRAM

DRAM DRAM DRAM DRAM DRAM DRAM DRAM

DRAMDRAM DRAM DRAM DRAM DRAM DRAM DRAM

DRAM

DRAM DRAM DRAM DRAM DRAM DRAM DRAM DRAM

DRAMDRAMDRAMDRAMDRAMDRAMDRAM DRAM

DRAM DRAM DRAM DRAM DRAM DRAM

DRAM DRAM DRAM DRAM DRAM DRAM

DRAMDRAM DRAM DRAM DRAM DRAM DRAM DRAM

DRAM

DRAM DRAM DRAM DRAM DRAM DRAM DRAM

DRAMDRAM DRAMDRAMDRAMDRAMDRAMDRAM DRAM

DRAMDRAM DRAM

DRAMDRAM DRAM

DRAMDRAMDRAM

DRAMDRAMDRAM

DRAM DRAM DRAM

DRAM DRAM DRAM

DRAM DRAM DRAM

DRAM DRAMDRAMDRAMDRAMDRAMDRAM DRAM

DRAM DRAM DRAM DRAM

DRAM DRAM DRAM DRAM

DRAMDRAM DRAM DRAM DRAM

DRAM

DRAM DRAM DRAM DRAM DRAM

DRAMDRAMDRAMDRAM DRAM

DRAM DRAM DRAM DRAM

DRAMDRAM DRAM DRAM DRAM

DRAM

DRAM DRAM DRAMDRAM

DRAMDRAM DRAM

DRAMDRAMDRAM

DRAMDRAMDRAM

DRAM DRAM DRAM

DRAM DRAM DRAM

DRAM DRAM DRAM

61

The following is an example on
how to address the 16 bytes of
SRAM memory, each bulb
represents an EN input signal,
and therefore depending on
which 4bit binary signal is sent
down (in the case of the picture
its 0101 because of the way the
switches are positioned) you
can enable one or another
memory device.

Overall this circuit is basic but
crowded, we vary the input
given to the 4-input AND gates
and depending on how we
change the input we can access
any of the 16 registers,
presented as light bulbs in this
example.

If we can do this for the enable
signal (EN), we can also do it for
the read signal using a tri-state
buffer, with the 3 states being
“Read”, “Write” or “Do nothing”
and just like that we have the
ability to have memory in the
SAP-1 that can save and deliver
information.

However, this task is incredibly long and repetitive, a solution to using so many wires for this memory
addressing circuit and so many gates to build the SRAM, can be to simply use a 74LS189 IC. This
integrated circuits packs, within its 4 cm of length and 1 cm of height, the whole Read, Write, do Nothing
circuit for addressing 64bits of SRAM, so we would only need two of this ICs in order to have the same
functionality as we would have with a physical space of about 60m by 60cm. This is one example of how
efficient we have become by using microchips.

Here we can see the two 74LS189 chips we would need.

62

SAP-1 CONSTRUCTION: PROGRAM COUNTER

The PC is another chapter that has no new electronic fundamentals, but rather one which takes from a
variety of the above chapters we’ve done. The PC must be able to step from instruction to the other one
in synchronous, that means in time with the SAP clock. It must also be able to store the next instruction so
that that instruction can be sent down the bus to the RAM and the CIR. As one last thing the PC has to be
able to step or jump to an instruction, as opposed to always adding one to the current instruction. The
jump instruction becomes of use when we want for example to loop through the same program, that is; 1,
2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4.... It is then useful to tell the computer once in instruction 4, to jump to
instruction 1.

Here we can see an abstract model of what the program counter should be able to do.

As said before, we already know how to store a value and send it somewhere in the bus, we also know
how to take input under certain conditions (either tri-state buffer or XOR conditional) and we also know
how to count - even though it may seem like we have never learned how to do it, we know the
components. By taking an SR Latch, and making it into a single input clock driven device (just like we did
with the clock) - this is a simple version of what is known as a JK Flip Flop, and if we combine various of
this flip flops by using AND gates as we did in the SRAM addressing circuit, we can come up with a circuit
that can count numbers up independently.

Here we can see
how we use 2 dual
input AND gates
as we are
combining 4
circuits.

That is the
simplest way to
count in binary,
and the one we
will use for
counting in the PC.

Please note, every
box represents a
single JK Flip-Flop.

CO; Program counter out
J; Jump (can be seen as PC in)
CE; Count enable (in increments)

PC

communication with bus

63

Just as it happened with the RAM, we can save the pain from spending an hour worth of building and
troubleshooting and just replace the our model with another IC, in this case the DM-4LS161A Synchronous
Binary Ripple Counter.

In the section before we just looked at how they look, but in this section and with the aim to learn more we
will see how to use them. We are going to look at their schematic (which is the equivalent of looking at a
human skeleton). The schematic resides in the component’s data sheet, a data sheet, lasting normally
from 3 to 10 pages, informs the user of all the information he might want to know about the component.

Here we can see the Connection Diagram for our 4bit counter. Now simply we need to know which each
pin does to know how to use it instead of building the circuits ourselves like in the page before.

Pin Title Description
1 Clear When high the whole IC will reset
2 Clock This needs our clock’s output as input in order to be synchronous
3 D.I. A The input needed if we want to jump to a new instruction (for example to loop program)
4 D.I. B The input needed if we want to jump to a new instruction (for example to loop program)
5 D.I. C The input needed if we want to jump to a new instruction (for example to loop program)
6 D.I. D The input needed if we want to jump to a new instruction (for example to loop program)
7 Enable P This input along with PIN 10 is needed in order for the IC to enable the jump instruction
8 GND Every IC needs this, by grounding there is a flow of electrons and therefore current.
9 LOAD This is the output signal when the IC is going to load something to the bus
10 Enable T This input along with PIN 7 is needed in order for the IC to enable the jump instruction
11 O. QA Output given to the bus for the CIR, it contains the address of the next instruction
12 O. QB Output given to the bus for the CIR, it contains the address of the next instruction
13 O. QC Output given to the bus for the CIR, it contains the address of the next instruction
14 O. QD Output given to the bus for the CIR, it contains the address of the next instruction
15 R. Carryout This output is connected in to another 74LS161 in case we want to count higher
16 Vcc This is simply the 5V in, the pin that powers the IC, flow starts here and ends at GND

64

SAP-1 CONSTRUCTION: HEX DECODER

We could have the output of our computer in the form of LEDs, and this would be fine as we know how to
read binary. However, and now only thinking about commodity and efficiency, we could have an output
display. The component used for this is a 7 segment display, although the name might sound strange they
are extremely famous, here is a picture of them

They connect to the our output the same way the LED do, but instead of one input they have 7 inputs and
we have to use logic to decide when they will go on or off. We are going to do a circuit that will decide
when the top section, marked with a small green arrow on the diagram on top, should go on. Before that
we need to look at all the possible outputs that we might want our 7-segment display to do.

A 7 segment display can represent 16 numbers, and the “A” and “b” represent 11 and 12, if we were to
carry on we would also reach “C”, “d”, “E” and “F”. Now that we know all the possible combinations that
the 7 segment display has to offer we are going to take the all of the possible numbers and turn them into
their binary equivalent, after that we are going to do a truth table based on whether said binary numbers
have the top part (shaded in green) on or off. Once that is done we will look work to make a circuit that
can manage having the top section on or off depending on the number given (which represents one of the
numbers or letters the 7 segment display can do)

First off, lets convert all the numbers and letters into binary

Number | 0 1 2 3 4 5 6 7 8 9
Binary | 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Number | A b C d E F
Binary | 1010 1011 1100 1101 1110 1111

Now we can see how how each number looks like in binary and we can do the truth table to see if the
denary representation of that number has the top part on or off in the 7 segment display, we shall mark
the fact that the top part is on as a 1 and as 0 when its off. And we should label the top part as ‘a’, which
is how that segment is called in the component’s data sheet.

65

Here we see the 1011 as an input, this is one of the inputs that should trigger ‘a’ to be off, and it indeed
does. Now we only need 7 of these conditional logic circuits and we will be able to represent any of the 16
numbers that we have. Of course there is a simpler way of doing this and that is with an EEPROM.

Bit 1 Bit 2 Bit 3 Bit 4 a
0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1

As we can see here, there are only 4 cases where
the top should be off, all the other ones it should
be on.

By doing a similar trick to what we did with the
RAM addressing we can only ‘contact’ those 4
cases where the light should be off and tell it it to
be off, whilst anything else which are not those 4
cases do have the lights on.

This can be done with logic gates. Below we can
see one solution. This uses a combination of
gates in order to pick out those 4 special cases
where the light shouldn’t be on, and allows any
other input to be on.

66

We have seen RAM previously, however there is another type of memory called ROM. ROM stands for
Read Only Memory, that means that we can’t store things like data or instructions in this memory. We can
think of it as a type of memory that holds valuable information for the computer to run. And just as it
holds this information it makes it the perfect place to program our functioning of the 7 segment display
without the need for the 7 cables and circa 120 logic gates.

Before we get into any more detail, you might be wondering what “EEP” means in “EEPROM”. As time
went by there have been various revolutions to the ROM and its ‘read-only’ capabilities. The fist one being
making the ROM programmable and thus turning it into PROM, this made ROM user programmable
instead of coming pre-loaded from the factory, however the user could only program it once. This brought
around the EPROM, or the Erasable Programmable Read Only Memory, this allowed the user to, through a
special hole in the body of the IC, shine UV rays and erase its memory. However, this method could be
very uncomfortable to carry on, as a whole production process would have to be put at halt in order to fix
one EPROM or, in the case of hobbyist, he would have to spend hours outside waiting for the sun to deliver
enough UV rays as he didn’t have the required material to shine artificial UV rays. This brought the
EEPROM, which stands for Electronically EPROM. Although the EEPROM is very useful it can be hard to
program as it needs special software in order to program it, and therefore we will simply use the longer
yet simpler circuit for our output.

SAP-1 CONSTRUCTION: FUTURE PROJECTS

And that is it! A very simple 8bit computer based on the SAP-1 has just been designed, this section will
talk about the possible future things that could be done to this computer in order to enhance its
functionality, and that I would like to do as I enjoy electronics and this type of projects. The following table
could be an example of some nice future additions.

Future addition Summary
Add an EEPROM for display By having an EEPROM we would be able to configure many more output

displays, which could make the computer more friendly

Program computer on the go A nice addition could be to extend the use of the instruction register
(CIR) which we built simply so that we could talk about its future. By,
once again, using an EEPROM, we can program each instruction to do
something. For example a 0010 could mean LOAD to CR A from bus.

Print circuit So far if we were to physically build this circuit it would be done on
something called breadboard, or prototyping board. This kind of board,
although widely used, is only temporary. One could order this circuit to
be printed in a PCB format, which has the cables wiring built into the
chassis of the board. This makes it more portable and safer.

Those are just some of the extensions that could be done to this project. But by itself, this is a very
capable computer, being able to calculate and save the arithmetical demands equivalent to a young
student. Thank you for reading.

